The UnitSystem
Physical unit system constants (Metric, English, Natural, etc...)
By default, UnitSystems
provides a modern unified re-interpretation of various historical unit systems which were previously incompatible. In order to make each UnitSystem
consistently compatible with each other, a few convenience assumptions are made. Specifically, it is assumed that all default modern unit systems share the same common Universe
of dimensionless constants, although this can be optionally changed. Therefore, the philosophy is to characterize differences among UnitSystem
instances by means of dimensional constants. As a result, all the defaults are ideal modern variants of these historical unit systems based on a common underlying Universe
, which are completely consistent and compatible with each other. These default UnitSystem
values are to be taken as a newly defined mutually-compatible recommended standard, verified to be consistent and coherent.
MeasureSystems.British
MeasureSystems.CODATA
MeasureSystems.Conventional
MeasureSystems.Cosmological
MeasureSystems.CosmologicalQuantum
MeasureSystems.EMU
MeasureSystems.ESU
MeasureSystems.Electronic
MeasureSystems.Engineering
MeasureSystems.English
MeasureSystems.FFF
MeasureSystems.FPS
MeasureSystems.Gauss
MeasureSystems.Gravitational
MeasureSystems.Hartree
MeasureSystems.Hubble
MeasureSystems.IAU
MeasureSystems.IAUE
MeasureSystems.IAUJ
MeasureSystems.IPS
MeasureSystems.International
MeasureSystems.InternationalMean
MeasureSystems.KKH
MeasureSystems.LorentzHeaviside
MeasureSystems.MPH
MeasureSystems.MTS
MeasureSystems.Meridian
MeasureSystems.Metric
MeasureSystems.Natural
MeasureSystems.NaturalGauss
MeasureSystems.Nautical
MeasureSystems.Planck
MeasureSystems.PlanckGauss
MeasureSystems.QCD
MeasureSystems.QCDGauss
MeasureSystems.QCDoriginal
MeasureSystems.Rydberg
MeasureSystems.SI1976
MeasureSystems.SI2019
MeasureSystems.Schrodinger
MeasureSystems.Stoney
MeasureSystems.Survey
Metric SI Unit Systems
In the Systeme International d'Unites (the SI units) the UnitSystem
constants are derived from the most accurate possible physical measurements and a few exactly defined constants. Exact values are the avogadro
number, boltzmann
constant, planck
constant, lightspeed
definition, and elementary charge
definition.
Construction of UnitSystem
instances based on specifying the the constants molarmass
, the vacuumpermeability
, and the molargas
along with some other options is facilitated by MetricSystem
. This construction helps characterize the differences between
MeasureSystems.Metric
— ConstantMetric = MetricSystem(milli,𝟐*τ/𝟏𝟎^7)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Standard Metric
system based on exact molarmass
and vacuumpermeability
.
julia> boltzmann(Metric) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 1.38064899953(43) × 10⁻²³ [J⋅K⁻¹] Metric
julia> planckreduced(Metric) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] Metric
julia> lightspeed(Metric) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Metric
julia> vacuumpermeability(Metric) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [H⋅m⁻¹] Metric
julia> electronmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Metric
julia> molarmass(Metric) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Metric
julia> luminousefficacy(Metric) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] Metric
MeasureSystems.SI2019
— ConstantSI2019 = MetricSystem(Mᵤ,μ₀)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Systeme International d'Unites based on approximate molarmass
and vacuumpermeability
.
julia> boltzmann(SI2019) # J⋅K⁻¹
kB = 1.380649×10⁻²³ [J⋅K⁻¹] SI2019
julia> planckreduced(SI2019) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] SI2019
julia> lightspeed(SI2019) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] SI2019
julia> vacuumpermeability(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅2 = 1.25663706212(19) × 10⁻⁶ [H⋅m⁻¹] SI2019
julia> electronmass(SI2019) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] SI2019
julia> molarmass(SI2019) # kg⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 0.00099999999966(31) [kg⋅mol⁻¹] SI2019
julia> luminousefficacy(SI2019) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] SI2019
MeasureSystems.SI1976
— ConstantSI1976 = MetricSystem(milli,𝟐*τ/𝟏𝟎^7,8.31432)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Reference UnitSystem
with universal gas constant of 8.31432
from 1976 standard atmosphere.
julia> boltzmann(SI1976) # J⋅K⁻¹
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅8.31432 = 1.38062531722(43) × 10⁻²³ [kg⋅m²s⁻²K⁻¹] SI1976
julia> planckreduced(SI1976) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [kg⋅m²s⁻¹] SI1976
julia> lightspeed(SI1976) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] SI1976
julia> vacuumpermeability(SI1976) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [kg⋅m⋅C⁻²] SI1976
julia> electronmass(SI1976) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] SI1976
julia> molarmass(SI1976) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] SI1976
julia> luminousefficacy(SI1976) # lm⋅W⁻¹
Kcd = 683.01969009009 [kg⁻¹m⁻²s³lm] SI1976
MeasureSystems.Engineering
— ConstantEngineering = MetricSystem(milli,𝟐*τ/𝟏𝟎^7,Rᵤ,g₀)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙
Standard Metric Engineering
system based on kilogram and kilopond (kilogram-force) units.
julia> boltzmann(Engineering) # kgf⋅m⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹2⁴5³ = 1.40787016925(43) × 10⁻²⁴ [kgf⋅m⋅K⁻¹] Engineering
julia> planckreduced(Engineering) # kgf⋅m⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹τ⁻¹ = 1.0753639802033891×10⁻³⁵ [kgf⋅m⋅s⋅rad⁻¹] Engineering
julia> lightspeed(Engineering) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Engineering
julia> vacuumpermeability(Engineering) # kgf⋅s²⋅C⁻²
g₀⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2814131853751459×10⁻⁷ [kgf⋅s²C⁻²] Engineering
julia> electronmass(Engineering) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Engineering
julia> molarmass(Engineering) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Engineering
julia> luminousefficacy(Engineering) # lm⋅s⋅m⁻¹⋅kgf⁻¹
Kcd⋅g₀ = 6698.135043821981 [kgf⁻¹m⁻¹s⋅lm] Engineering
julia> gravity(Engineering) # kg⋅m⋅kgf⁻¹⋅s⁻²
g₀ = 9.80665 [kgf⁻¹kg⋅m⋅s⁻²] Engineering
Additional Metric
variants with angle
scaling include MetricTurn
, MetricSpatian
, MetricGradian
, MetricDegree
, MetricArcminute
, MetricArcsecond
.
Historically, the josephson
and klitzing
constants have been used to define Conventional
and CODATA
variants.
MeasureSystems.Conventional
— ConstantConventional = ConventionalSystem(RK1990,KJ2014)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Conventional electronic UnitSystem
with 1990 tuned josephson
and klitzing
constants.
julia> josephson(Conventional) # Hz⋅V⁻¹
KJ90 = 4.835979×10¹⁴ [Hz⋅V⁻¹] Conventional
julia> klitzing(Conventional) # Ω
RK90 = 25812.807 [Ω] Conventional
julia> boltzmann(Conventional) # J⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹RK90⁻¹KJ90⁻²2⁶5³ = 1.38064872956(43) × 10⁻²³ [J⋅K⁻¹] Conventional
julia> planckreduced(Conventional) # J⋅s⋅rad⁻¹
RK90⁻¹KJ90⁻²τ⁻¹2² = 1.0545716114388567×10⁻³⁴ [J⋅s] Conventional
julia> lightspeed(Conventional) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Conventional
julia> vacuumpermeability(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅2 = 1.25663703976(19) × 10⁻⁶ [H⋅m⁻¹] Conventional
julia> electronmass(Conventional) # kg
𝘤⁻¹R∞⋅α⁻²RK90⁻¹KJ90⁻²2³ = 9.1093819203(28) × 10⁻³¹ [kg] Conventional
julia> molarmass(Conventional) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Conventional
julia> luminousefficacy(Conventional) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK90⋅KJ90²2⁻² = 683.0198236454071 [lm⋅W⁻¹] Conventional
MeasureSystems.CODATA
— ConstantCODATA = ConventionalSystem(RK2014,KJ2014,Rᵤ2014)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Reference UnitSystem
based on Committee on Data of the International Science Council.
julia> josephson(CODATA) # Hz⋅V⁻¹
KJ = 4.835978525(30) × 10¹⁴ [Hz⋅V⁻¹] CODATA
julia> klitzing(CODATA) # Ω
RK = 25812.8074555(59) [Ω] CODATA
julia> boltzmann(CODATA) # J⋅K⁻¹
𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹RK⁻¹KJ⁻²Rᵤ2014⋅2⁶5³ = 1.38064851(80) × 10⁻²³ [J⋅K⁻¹] CODATA
julia> planckreduced(CODATA) # J⋅s⋅rad⁻¹
RK⁻¹KJ⁻²τ⁻¹2² = 1.054571800(13) × 10⁻³⁴ [J⋅s] CODATA
julia> lightspeed(CODATA) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] CODATA
julia> vacuumpermeability(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅2 = 1.25663706194(35) × 10⁻⁶ [H⋅m⁻¹] CODATA
julia> electronmass(CODATA) # kg
𝘤⁻¹R∞⋅α⁻²RK⁻¹KJ⁻²2³ = 9.10938355(11) × 10⁻³¹ [kg] CODATA
julia> molarmass(CODATA) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] CODATA
julia> luminousefficacy(CODATA) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK⋅KJ²2⁻² = 683.0197015(85) [lm⋅W⁻¹] CODATA
Originally, the practical units where specified by resistance
and electricpotential
.
MeasureSystems.International
— ConstantInternational = ElectricSystem(Metric,Ωᵢₜ = 1.000495,Vᵢₜ = 1.00033)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
International UnitSystem
with United States measurements of Ωᵢₜ
and Vᵢₜ
.
julia> resistance(International,Metric) # Ω⋅Ω⁻¹
Ωᵢₜ = 1.000495 [kg⋅m⋅s⁻²C⁻²]/[kg⋅m⋅s⁻²C⁻²] International -> Metric
julia> electricpotential(International,Metric) # V⋅V⁻¹
Vᵢₜ = 1.00033 [V⋅m⁻¹]/[V⋅m⁻¹] International -> Metric
julia> boltzmann(International) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁴5³ = 1.38042119247(42) × 10⁻²³ [J⋅K⁻¹] International
julia> planckreduced(International) # J⋅s⋅rad⁻¹
𝘩⋅Ωᵢₜ⋅Vᵢₜ⁻²τ⁻¹ = 1.0543978133151816×10⁻³⁴ [J⋅s] International
julia> lightspeed(International) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] International
julia> vacuumpermeability(International) # H⋅m⁻¹
Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2560153338456637×10⁻⁶ [H⋅m⁻¹] International
julia> electronmass(International) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²Ωᵢₜ⋅Vᵢₜ⁻²2 = 9.1078806534(28) × 10⁻³¹ [kg] International
julia> molarmass(International) # kg⋅mol⁻¹
Ωᵢₜ⋅Vᵢₜ⁻²2⁻³5⁻³ = 0.0009998350000179567 [kg⋅mol⁻¹] International
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] International
MeasureSystems.InternationalMean
— ConstantInternationalMean = ElectricSystem(Metric,1.00049,1.00034)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
International UnitSystem
with mean measurements of Ωᵢₜ
and Vᵢₜ
.
julia> resistance(InternationalMean,Metric) # Ω⋅Ω⁻¹
1.00049 = 1.00049 [kg⋅m⋅s⁻²C⁻²]/[kg⋅m⋅s⁻²C⁻²] InternationalMean -> Metric
julia> electricpotential(InternationalMean,Metric) # V⋅V⁻¹
1.00034 = 1.00034 [V⋅m⁻¹]/[V⋅m⁻¹] InternationalMean -> Metric
julia> boltzmann(InternationalMean) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³/1.0001900224889804 = 1.38038669501(42) × 10⁻²³ [J⋅K⁻¹] InternationalMean
julia> planckreduced(InternationalMean) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹/1.0001900224889804 = 1.0543714633563797×10⁻³⁴ [J⋅s] InternationalMean
julia> lightspeed(InternationalMean) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] InternationalMean
julia> vacuumpermeability(InternationalMean) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷/1.00049 = 1.2560216108466024×10⁻⁶ [H⋅m⁻¹] InternationalMean
julia> electronmass(InternationalMean) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2/1.0001900224889804 = 9.1076530427(28) × 10⁻³¹ [kg] InternationalMean
julia> molarmass(InternationalMean) # kg⋅mol⁻¹
2⁻³5⁻³/1.0001900224889804 = 0.0009998100136127059 [kg⋅mol⁻¹] InternationalMean
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] International
Electromagnetic CGS Systems
Alternatives to the SI unit system are the centimetre-gram-second variants, where the constants are rescaled with centi
meter and milli
kilogram units along with introduction of additional rationalization
and lorentz
constants or electromagnetic units.
MeasureSystems.EMU
— ConstantEMU = GaussSystem(Metric,𝟏,𝟐*τ)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L¹ᐟ², Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Centimetre-gram-second UnitSystem
variant based on EMU
(non-rationalized).
julia> boltzmann(EMU) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] EMU
julia> planckreduced(EMU) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] EMU
julia> lightspeed(EMU) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] EMU
julia> vacuumpermeability(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> electronmass(EMU) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] EMU
julia> molarmass(EMU) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] EMU
julia> luminousefficacy(EMU) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] EMU
julia> rationalization(EMU)
τ⋅2 = 12.566370614359172 [𝟙] EMU
MeasureSystems.ESU
— ConstantESU = GaussSystem(Metric,(𝟏𝟎*𝘤)^-2,𝟐*τ)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Centimetre-gram-second UnitSystem
variant based on ESU
(non-rationalized).
julia> boltzmann(ESU) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] ESU
julia> planckreduced(ESU) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] ESU
julia> lightspeed(ESU) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] ESU
julia> vacuumpermeability(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> electronmass(ESU) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] ESU
julia> molarmass(ESU) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] ESU
julia> luminousefficacy(ESU) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] ESU
julia> rationalization(ESU)
τ⋅2 = 12.566370614359172 [𝟙] ESU
MeasureSystems.Gauss
— ConstantGauss = GaussSystem(Metric,𝟏,𝟐*τ,𝟏𝟎^-2/𝘤)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=LT⁻¹
Centimetre-gram-second UnitSystem
variant CGS
(Gauss-Lorentz, non-rationalized).
julia> boltzmann(Gauss) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] Gauss
julia> planckreduced(Gauss) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] Gauss
julia> lightspeed(Gauss) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] Gauss
julia> vacuumpermeability(Gauss) # statH⋅cm⁻¹
𝟏 = 1.0 [𝟙] Gauss
julia> electronmass(Gauss) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] Gauss
julia> molarmass(Gauss) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] Gauss
julia> luminousefficacy(Gauss) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] Gauss
julia> rationalization(Gauss)
τ⋅2 = 12.566370614359172 [𝟙] Gauss
julia> lorentz(Gauss)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] Gauss
MeasureSystems.LorentzHeaviside
— ConstantLorentzHeaviside = GaussSystem(Metric,𝟏,𝟏,centi/𝘤)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=LT⁻¹
Centimetre-gram-second UnitSystem
variant HLU
(Heaviside-Lorentz, rationalized).
julia> boltzmann(LorentzHeaviside) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] LorentzHeaviside
julia> planckreduced(LorentzHeaviside) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] LorentzHeaviside
julia> lightspeed(LorentzHeaviside) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] LorentzHeaviside
julia> vacuumpermeability(HLU) # hlH⋅cm⁻¹
𝟏 = 1.0 [𝟙] LorentzHeaviside
julia> electronmass(LorentzHeaviside) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] LorentzHeaviside
julia> molarmass(LorentzHeaviside) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] LorentzHeaviside
julia> luminousefficacy(LorentzHeaviside) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] LorentzHeaviside
julia> rationalization(LorentzHeaviside)
𝟏 = 1.0 [𝟙] LorentzHeaviside
julia> lorentz(LorentzHeaviside)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
There are multiple choices of elctromagnetic units for these variants based on electromagnetic units, electrostatic units, Gaussian non-rationalized units, and Lorentz-Heaviside rationalized units. Note that CGS
is an alias for the Gauss
system.
Modified (Entropy) Unit Systems
Most other un-natural unit systems are derived from the construction above by rescaling time
, length
, mass
, temperature
, and gravity
; which results in modified entropy constants:
MeasureSystems.Gravitational
— ConstantGravitational = EntropySystem(Metric,𝟏,𝟏,g₀)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Standard Gravitational
system based on hyl
and kilopond
units.
julia> boltzmann(Gravitational) # kgf⋅m⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹2⁴5³ = 1.40787016925(43) × 10⁻²⁴ [kgf⋅m⋅K⁻¹] Gravitational
julia> planckreduced(Gravitational) # kgf⋅m⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹τ⁻¹ = 1.0753639802033891×10⁻³⁵ [kgf⋅m⋅s] Gravitational
julia> lightspeed(Gravitational) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Gravitational
julia> vacuumpermeability(Gravitational) # H⋅m⁻¹
g₀⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2814131853751459×10⁻⁷ [kgf⋅s²C⁻²] Gravitational
julia> electronmass(Gravitational) # hyl
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹2 = 9.2889862507(28) × 10⁻³² [hyl] Gravitational
julia> molarmass(Gravitational) # hyl⋅mol⁻¹
g₀⁻¹2⁻³5⁻³ = 0.00010197162129779284 [kgf⋅m⁻¹s²mol⁻¹] Gravitational
julia> luminousefficacy(Gravitational) # lm⋅s⋅m⁻¹⋅kgf⁻¹
Kcd⋅g₀ = 6698.135043821981 [kgf⁻¹m⁻¹s⋅lm] Gravitational
MeasureSystems.MTS
— ConstantMTS = EntropySystem(SI2019,𝟏,𝟏,kilo)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Metre-tonne-second UnitSystem
variant of Metric
system.
julia> boltzmann(MTS) # kJ⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 1.38064899953(43) × 10⁻²⁶ [t⋅m²s⁻²K⁻¹] MTS
julia> planckreduced(MTS) # kJ⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁻³5⁻³ = 1.0545718176461566×10⁻³⁷ [t⋅m²s⁻¹] MTS
julia> lightspeed(MTS) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] MTS
julia> vacuumpermeability(MTS) # kH⋅m⁻¹
τ⋅2⁻⁹5⁻¹⁰ = 1.2566370614359174×10⁻⁹ [t⋅m⋅C⁻²] MTS
julia> electronmass(MTS) # t
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁻²5⁻³ = 9.1093837016(28) × 10⁻³⁴ [t] MTS
julia> molarmass(MTS) # t⋅mol⁻¹
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [t⋅mol⁻¹] MTS
julia> luminousefficacy(MTS) # lm⋅kW⁻¹
Kcd⋅2³5³ = 683019.6900900899 [t⁻¹m⁻²s³lm] MTS
MeasureSystems.KKH
— ConstantKKH = EntropySystem(Metric,HOUR,kilo,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Kilometer-kilogram-hour UnitSystem
variant of Metric
system.
julia> boltzmann(KKH) # kg⋅km²⋅h⁻²⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁶3⁴5 = 1.78932110338(55) × 10⁻²² [kg⋅km²h⁻²K⁻¹] KKH
julia> planckreduced(KKH) # kg⋅km²⋅h⁻¹
𝘩⋅τ⁻¹2⁻²3²5⁻⁴ = 3.7964585435261634×10⁻³⁷ [kg⋅km²h⁻¹] KKH
julia> lightspeed(KKH) # km⋅hr⁻¹
𝘤⋅2⋅3²5⁻¹ = 1.0792528488×10⁹ [km⋅h⁻¹] KKH
julia> vacuumpermeability(KKH) # kg⋅km⋅C⁻²
τ⋅2⁻⁹5⁻¹⁰ = 1.2566370614359174×10⁻⁹ [kg⋅km⋅C⁻²] KKH
julia> electronmass(KKH) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] KKH
julia> molarmass(KKH) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] KKH
julia> luminousefficacy(KKH) # lm⋅h³⋅kg⁻¹⋅km⁻²
Kcd⋅2⁻⁶3⁻⁶ = 0.014639482383618185 [kg⁻¹km⁻²h³lm] KKH
MeasureSystems.MPH
— ConstantMPH = EntropySystem(FPS,HOUR,mi,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Mile-pound-hour specification based on FPS
absolute UnitSystem
.
julia> boltzmann(MPH) # lbf⋅mi²⋅hr⁻²⋅F⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2²5⁶11⁻² = 8.4615956484(26) × 10⁻²³ [lb⋅mi²h⁻²°R⁻¹] MPH
julia> planckreduced(MPH) # lbf⋅mi²⋅hr⁻¹⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹2⁻⁶11⁻² = 3.2315817800735083×10⁻³⁷ [lb⋅mi²h⁻¹] MPH
julia> lightspeed(MPH) # mi⋅hr⁻¹
𝘤⋅ft⁻¹2⁻¹3⋅5⋅11⁻¹ = 6.706166293843951×10⁸ [mi⋅h⁻¹] MPH
julia> vacuumpermeability(MPH) # lbm⋅mi⋅C⁻²
ft⁻¹lb⁻¹τ⋅2⁻¹¹3⁻¹5⁻⁸11⁻¹ = 1.7214532710813804×10⁻⁹ [lb⋅mi⋅C⁻²] MPH
julia> electronmass(MPH) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lb] MPH
julia> molarmass(MPH) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lb⋅lb-mol⁻¹] MPH
julia> luminousefficacy(MPH) # lm⋅h³⋅lb⁻¹⋅mi⁻²
Kcd⋅ft²lb⋅2⁻²3⁻⁴5⁻⁴11² = 0.017198446999173198 [lb⁻¹mi⁻²h³lm] MPH
MeasureSystems.Nautical
— ConstantNautical = EntropySystem(Metric,HOUR,nm,em^3,𝟏,τ*𝟑^3/𝟐^10/𝟓^12,milli)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Nautical miles, kilo-earthgram, hour specification based on Meridian
definition.
julia> greatcircle(Nautical) # nm
2⁵3³5² = 21600.0 [nm] Nautical
julia> boltzmann(Nautical) # keg⋅nm²⋅hr⁻²⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁵2⁴⁹3¹⁰5³² = 5.180046618(26) × 10⁻²³ [keg⋅nm²h⁻²K⁻¹] Nautical
julia> planckreduced(Nautical) # keg⋅nm²⋅hr⁻¹⋅rad⁻¹
𝘩⋅g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁶2⁴¹3⁸5²⁷ = 1.0990666907(55) × 10⁻³⁷ [keg⋅nm²h⁻¹] Nautical
julia> lightspeed(Nautical) # nm⋅hr⁻¹
𝘤⋅g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹3⁵5⁴ = 5.8195383759(58) × 10⁸ [nm⋅h⁻¹] Nautical
julia> vacuumpermeability(Nautical) # keg⋅nm⋅eC⁻²
τ⋅2⁻¹⁰3³5⁻¹² = 6.785840131753954×10⁻¹⁰ [keg⋅nm⋅eC⁻²] Nautical
julia> electronmass(Nautical) # keg
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀³ᐟ²GME⁻³ᐟ²τ⁻³2²⁸5²¹ = 9.069925385(27) × 10⁻³¹ [keg] Nautical
julia> molarmass(Nautical) # keg⋅eg-mol⁻¹
2⁻³5⁻³ = 0.001 [keg⋅eg-mol⁻¹] Nautical
julia> luminousefficacy(Nautical) # lm⋅h³⋅keg⁻¹⋅nm⁻²
Kcd⋅g₀⁻⁵ᐟ²GME⁵ᐟ²τ⁵2⁻⁴⁹3⁻¹²5⁻³¹ = 0.05056853095(25) [keg⁻¹nm⁻²h³lm] Nautical
MeasureSystems.Meridian
— ConstantMeridian = EntropySystem(Metric,𝟏,em,em^3,𝟏,τ/𝟐^6/𝟓^7,milli)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Modern ideal Meridian
system defined by France's original earthmeter
definition.
julia> greatcircle(Meridian) # em
2⁹5⁷ = 4.0×10⁷ [em] Meridian
julia> boltzmann(Meridian) # eJ⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁵2⁴⁹5³⁸ = 1.3706960050(69) × 10⁻²³ [eJ⋅K⁻¹] Meridian
julia> planckreduced(Meridian) # eJ⋅s⋅rad⁻¹
𝘩⋅g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁶2⁴⁵5³⁵ = 1.0469694890(53) × 10⁻³⁴ [eJ⋅s] Meridian
julia> lightspeed(Meridian) # em⋅s⁻¹
𝘤⋅g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 2.9935896996(3) × 10⁸ [em⋅s⁻¹] Meridian
julia> vacuumpermeability(Meridian) # kegf⋅s²⋅eC⁻²
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [eH⋅em⁻¹] Meridian
julia> electronmass(Meridian) # keg
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀³ᐟ²GME⁻³ᐟ²τ⁻³2²⁸5²¹ = 9.069925385(27) × 10⁻³¹ [keg] Meridian
julia> molarmass(Meridian) # keg⋅eg-mol⁻¹
2⁻³5⁻³ = 0.001 [keg⋅eg-mol⁻¹] Meridian
julia> luminousefficacy(Meridian) # lm⋅W⁻¹
Kcd⋅g₀⁻⁵ᐟ²GME⁵ᐟ²τ⁵2⁻⁴⁵5⁻³⁵ = 687.9792808(35) [lm⋅eW⁻¹] Meridian
Foot-Pound-Second-Rankine
In Britain and the United States an English
system of engineering units was commonly used.
MeasureSystems.FPS
— ConstantFPS = RankineSystem(Metric,ft,lb)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Absolute English UnitSystem
based on the foot, pound, second, and poundal.
julia> boltzmann(FPS) # ft⋅pdl⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2⁴3⁻²5⁴ = 1.82018324169(56) × 10⁻²² [lb⋅ft²s⁻²°R⁻¹] FPS
julia> planckreduced(FPS) # ft⋅pdl⋅s⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹ = 2.5025369304889247×10⁻³³ [lb⋅ft²s⁻¹] FPS
julia> lightspeed(FPS) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] FPS
julia> vacuumpermeability(FPS) # lb⋅ft⋅C⁻²
ft⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 9.089273271309688×10⁻⁶ [lb⋅ft⋅C⁻²] FPS
julia> electronmass(FPS) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lb] FPS
julia> molarmass(FPS) # lb⋅lb-mol⁻¹
𝟏 = 1.0 [lb⋅lb-mol⁻¹] FPS
julia> luminousefficacy(FPS) # lm⋅s³⋅lb⁻¹⋅ft⁻²
Kcd⋅ft²lb = 28.78252493663283 [lb⁻¹ft⁻²s³lm] FPS
MeasureSystems.IPS
— ConstantIPS = RankineSystem(Metric,ft/𝟐^2/𝟑,lb*g₀*𝟐^2*𝟑/ft)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
British Gravitational UnitSystem
historically used in the United States of America.
julia> boltzmann(IPS) # in⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁶3⁻¹5⁴ = 6.7887629566(21) × 10⁻²³ [lb⋅in⋅°R⁻¹] IPS
julia> planckreduced(IPS) # in⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹2²3 = 9.333747076683978×10⁻³⁴ [lb⋅in⋅s] IPS
julia> lightspeed(IPS) # in⋅s⁻¹
𝘤⋅ft⁻¹2²3 = 1.1802852677165354×10¹⁰ [in⋅s⁻¹] IPS
julia> vacuumpermeability(IPS) # slinch⋅in⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lb⋅s²C⁻²] IPS
julia> electronmass(IPS) # slinch
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹ft⋅lb⁻¹2⁻¹3⁻¹ = 5.2015921425(16) × 10⁻³³ [slinch] IPS
julia> molarmass(IPS) # slinch⋅slinch-mol⁻¹
𝟏 = 1.0 [lb⋅in⁻¹s²slinch-mol⁻¹] IPS
julia> luminousefficacy(IPS) # lm⋅s⋅in⁻¹⋅lb⁻¹
Kcd⋅g₀⋅ft⋅lb⋅2⁻²3⁻¹ = 77.17086290732456 [lb⁻¹in⁻¹s⋅lm] IPS
MeasureSystems.British
— ConstantBritish = RankineSystem(Metric,ft,slug)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
British Gravitational UnitSystem
historically used by Britain and United States.
julia> boltzmann(British) # ft⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lb⋅ft⋅°R⁻¹] British
julia> planckreduced(British) # ft⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lb⋅ft⋅s] British
julia> lightspeed(British) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] British
julia> vacuumpermeability(British) # slug⋅ft⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lb⋅s²C⁻²] British
julia> electronmass(British) # slugs
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹ft⋅lb⁻¹2 = 6.2419105710(19) × 10⁻³² [slug] British
julia> molarmass(British) # slug⋅slug-mol⁻¹
𝟏 = 1.0 [lb⋅ft⁻¹s²slug-mol⁻¹] British
julia> luminousefficacy(British) # lm⋅s⋅ft⁻¹⋅lb⁻¹
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lb⁻¹ft⁻¹s⋅lm] British
MeasureSystems.English
— ConstantEnglish = RankineSystem(Metric,ft,lb,g₀/ft)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙
English Engineering UnitSystem
historically used in the United States of America.
julia> boltzmann(English) # ft⋅lbf⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lbf⋅ft⋅°R⁻¹] English
julia> planckreduced(English) # ft⋅lbf⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lbf⋅ft⋅s⋅rad⁻¹] English
julia> lightspeed(English) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] English
julia> vacuumpermeability(English) # lbm⋅ft⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lbf⋅s²C⁻²] English
julia> electronmass(English) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] English
julia> molarmass(English) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lbm⋅lb-mol⁻¹] English
julia> luminousefficacy(English) # lm⋅s⋅ft⁻¹⋅lbf⁻¹
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lbf⁻¹ft⁻¹s⋅lm] English
julia> gravity(English) # lbm⋅ft⋅lbf⁻¹⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [lbf⁻¹lbm⋅ft⋅s⁻²] English
MeasureSystems.Survey
— ConstantSurvey = RankineSystem(Metric,ftUS,lb,g₀/ftUS)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙
English Engineering UnitSystem
based on the geophysical US survey foot (1200/3937).
julia> boltzmann(Survey) # ftUS⋅lbf⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ftUS⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6572911492(17) × 10⁻²⁴ [lbf⋅ft⋅°R⁻¹] Survey
julia> planckreduced(Survey) # ftUS⋅lbf⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ftUS⁻¹lb⁻¹τ⁻¹ = 7.77810700765819×10⁻³⁵ [lbf⋅ft⋅s⋅rad⁻¹] Survey
julia> lightspeed(Survey) # ftUS⋅s⁻¹
𝘤⋅ftUS⁻¹ = 9.835690892883334×10⁸ [ft⋅s⁻¹] Survey
julia> vacuumpermeability(Survey) # lbm⋅ftUS⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lbf⋅s²C⁻²] Survey
julia> electronmass(Survey) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] Survey
julia> molarmass(Survey) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lbm⋅lb-mol⁻¹] Survey
julia> luminousefficacy(Survey) # lm⋅s⋅ft⁻¹⋅lbf⁻¹
Kcd⋅g₀⋅ftUS⋅lb = 926.0522069923087 [lbf⁻¹ft⁻¹s⋅lm] Survey
julia> gravity(Survey) # lbm⋅ftUS⋅lbf⁻¹⋅s⁻²
g₀⋅ftUS⁻¹ = 32.17398420833334 [lbf⁻¹lbm⋅ft⋅s⁻²] Survey
An impractical yet humorous unit system is the FFF
specification.
MeasureSystems.FFF
— ConstantFFF = EntropySystem(Metric,𝟐*𝟕*DAY,fur,𝟐*𝟑^2*𝟓*lb,°R,0,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Furlong–firkin–fortnight FFF
is a humorous UnitSystem
based on unusal impractical units.
julia> boltzmann(FFF) # fir⋅fur²⋅ftn⁻²⋅F⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2¹⁵5⁵7²11⁻² = 6.7931043720(21) × 10⁻¹⁸ [fir⋅fur²ftn⁻²°R⁻¹] FFF
julia> planckreduced(FFF) # fir⋅fur²⋅ftn⁻¹⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹2³3⁻¹5⁻¹7⋅11⁻² = 7.721326066522302×10⁻³⁵ [fir⋅fur²ftn⁻¹] FFF
julia> lightspeed(FFF) # fur⋅ftn⁻¹
𝘤⋅ft⁻¹2⁶3²5⋅7⋅11⁻¹ = 1.8026174997852542×10¹² [fur⋅ftn⁻¹] FFF
julia> vacuumpermeability(FFF) # fir⋅fur⋅Inf⁻²
𝟏/Inf = 0.0 [fir⋅fur⋅Inf⁻²] FFF
julia> electronmass(FFF) # fir
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹3⁻²5⁻¹ = 2.23141704217(68) × 10⁻³² [fir] FFF
julia> molarmass(FFF) # fir⋅fir-mol⁻¹
𝟏 = 1.0 [fir⋅fir-mol⁻¹] FFF
julia> luminousefficacy(FFF) # lm⋅ftn³⋅fir⁻¹⋅fur⁻²
Kcd⋅ft²lb⋅2⁻¹⁹3⁻⁵5⁻³7⁻³11² = 6.375788993269436×10⁻¹⁰ [fir⁻¹fur⁻²ftn³lm] FFF
Astronomical Unit Systems
The International Astronomical Union (IAU) units are based on the solar mass, distance from the sun to the earth, and the length of a terrestrial day.
MeasureSystems.IAU
— ConstantIAU☉ = EntropySystem(Metric,DAY,au,GM☉/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Solar UnitSystem
defined by International Astronomical Union and solarmass
.
julia> boltzmann(IAU) # M⊙⋅au²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹au⁻⁵kG⁻²mP⁻²τ⁻³2⁴⁶3²⁰5¹⁷ = 2.316083(51) × 10⁻⁶⁶ [M☉⋅au²D⁻²K⁻¹] IAU☉
julia> planckreduced(IAU) # M⊙⋅au²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅au⁻⁵kG⁻²mP⁻²τ⁻⁴2³⁵3¹⁷5¹² = 2.047544(45) × 10⁻⁸² [M☉⋅au²D⁻¹] IAU☉
julia> lightspeed(IAU) # au⋅D⁻¹
𝘤⋅au⁻¹2⁷3³5² = 173.1446326742(35) [au⋅D⁻¹] IAU☉
julia> vacuumpermeability(IAU) # M⊙⋅au²⋅C⁻²
𝘩⋅𝘤⋅au⁻⁴kG⁻²mP⁻²τ⁻²2²²3¹⁴5³ = 4.224533(93) × 10⁻⁴⁸ [M☉⋅au⋅C⁻²] IAU☉
julia> electronmass(IAU) # M⊙
𝘩²R∞⋅α⁻²au⁻³kG⁻²mP⁻²τ⁻³2²⁹3¹⁴5¹⁰ = 4.58124(10) × 10⁻⁶¹ [M☉] IAU☉
julia> molarmass(IAU) # M☉⋅mol⁻¹
𝘩⋅𝘤⋅au⁻³kG⁻²mP⁻²τ⁻³2²⁵3¹⁴5⁷ = 5.02915(11) × 10⁻³⁴ [M☉⋅mol⁻¹] IAU☉
julia> luminousefficacy(IAU) # lm⋅D³⋅M☉⁻¹⋅au⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅au⁵kG²mP²τ³2⁻⁴⁹3⁻²³5⁻¹⁶ = 4.71247(10) × 10⁴⁰ [M☉⁻¹au⁻²D³lm] IAU☉
julia> gaussgravitation(IAU) # D⁻¹
kG⋅τ⋅2⁻⁷3⁻⁴5⁻³ = 0.017202098964713464 [D⁻¹] IAU☉
MeasureSystems.IAUE
— ConstantIAUE = EntropySystem(Metric,DAY,LD,GME/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Astronomical (Earth) UnitSystem
defined by lunardistance
around the earthmass
.
julia> boltzmann(IAUE) # ME⋅LD²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹mP⁻²GME⁻¹τ⁻¹2¹²5/202692169 = 1.167923(26) × 10⁻⁵⁵ [ME⋅LD²D⁻²K⁻¹] IAUE
julia> planckreduced(IAUE) # ME⋅LD²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅mP⁻²GME⁻¹τ⁻²2⋅3⁻³5⁻⁴/202692169 = 1.032508(23) × 10⁻⁷¹ [ME⋅LD²D⁻¹] IAUE
julia> lightspeed(IAUE) # LD⋅D⁻¹
𝘤⋅2⁴5⁻¹/14237 = 67383.2876027253 [LD⋅D⁻¹] IAUE
julia> vacuumpermeability(IAUE) # ME⋅LD²⋅C⁻²
𝘩⋅𝘤⋅mP⁻²GME⁻¹2⁻⁹3⁻³5⁻¹⁰/14237 = 5.47389(12) × 10⁻⁴⁰ [ME⋅LD⋅C⁻²] IAUE
julia> electronmass(IAUE) # ME
𝘩²R∞⋅α⁻²mP⁻²GME⁻¹τ⁻¹2 = 1.525306(34) × 10⁻⁵⁵ [ME] IAUE
julia> molarmass(IAUE) # ME⋅mol⁻¹
𝘩⋅𝘤⋅mP⁻²GME⁻¹τ⁻¹2⁻³5⁻³ = 1.674434(37) × 10⁻²⁸ [ME⋅mol⁻¹] IAUE
julia> luminousefficacy(IAUE) # lm⋅D³⋅ME⁻¹⋅LD⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅mP²GME⋅τ⋅2⁻¹⁵3⁻³⋅202692169 = 9.34520(21) × 10²⁹ [ME⁻¹LD⁻²D³lm] IAUE
julia> turn(IAU)/gaussianmonth(IAU) # D⁻¹
GME¹ᐟ²2⁵ᐟ²3⁻³ᐟ²5⁻⁵ᐟ²/1.6987431854323947×10⁶ = 0.22888074402(23) [D⁻¹] IAU☉
MeasureSystems.IAUJ
— ConstantIAUJ = EntropySystem(Metric,DAY,JD,GMJ/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙
Astronomical (Jupiter) UnitSystem
defined by jupiterdistance
around the solarmass
.
julia> boltzmann(IAUJ) # MJ⋅JD²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹mP⁻²GMJ⁻¹τ⁻¹2⁶3⁴5⁻⁵/67336617049 = 8.95968(20) × 10⁻⁶⁵ [MJ⋅JD²D⁻²K⁻¹] IAUJ
julia> planckreduced(IAUJ) # MJ⋅JD²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅mP⁻²GMJ⁻¹τ⁻²2⁻⁵3⋅5⁻¹⁰/67336617049 = 7.92084(17) × 10⁻⁸¹ [MJ⋅JD²D⁻¹] IAUJ
julia> lightspeed(IAUJ) # JD⋅D⁻¹
𝘤⋅2⋅3²5⁻⁴/259493 = 33.272661653300865 [JD⋅D⁻¹] IAUJ
julia> vacuumpermeability(IAUJ) # MJ⋅JD²⋅C⁻²
𝘩⋅𝘤⋅mP⁻²GMJ⁻¹2⁻¹²3⁻¹5⁻¹³/259493 = 8.50430(19) × 10⁻⁴⁶ [MJ⋅JD⋅C⁻²] IAUJ
julia> electronmass(IAUJ) # MJ
𝘩²R∞⋅α⁻²mP⁻²GMJ⁻¹τ⁻¹2 = 4.79915(11) × 10⁻⁵⁸ [MJ] IAUJ
julia> molarmass(IAUJ) # MJ⋅mol⁻¹
𝘩⋅𝘤⋅mP⁻²GMJ⁻¹τ⁻¹2⁻³5⁻³ = 5.26836(12) × 10⁻³¹ [MJ⋅mol⁻¹] IAUJ
julia> luminousefficacy(IAUJ) # lm⋅D³⋅MJ⁻¹⋅JD⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅mP²GMJ⋅τ⋅2⁻⁹3⁻⁷5⁶⋅67336617049 = 1.218177(27) × 10³⁹ [MJ⁻¹JD⁻²D³lm] IAUJ
julia> sqrt(gravitation(IAUJ)*solarmass(IAUJ)/jupiterdistance(IAUJ)^3) # D⁻¹
au³ᐟ²kG⋅τ⋅2⁻¹⁶3⁻¹¹ᐟ²5⁻¹²/1.3218691602384917×10⁸ = 0.001449102839405(44) [D⁻¹] IAUJ
MeasureSystems.Hubble
— ConstantHubble = AstronomicalSystem(Metric,th,𝘤*th,mₑ)
F=T⁻¹, M=𝟙, L=T, T, Q, Θ=𝟙, N=𝟙, J=T⁻¹, A=𝟙, R=𝟙, C=𝟙
Hubble UnitSystem
defined by hubble
parameter.
julia> boltzmann(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> planckreduced(Hubble)
𝘤⁻¹R∞⁻¹α²H0⋅au⁻¹2⁻¹¹3⁻⁴5⁻⁶ = 2.824(18) × 10⁻³⁹ [T] Hubble
julia> lightspeed(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> vacuumpermeability(Hubble)
τ⋅2 = 12.566370614359172 [TQ⁻²] Hubble
julia> electronmass(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> molarmass(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> luminousefficacy(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> hubble(Hubble)
𝟏 = 1.0 [T⁻¹] Hubble
julia> cosmological(Hubble)
ΩΛ⋅3 = 2.067(17) [T⁻²] Hubble
MeasureSystems.Cosmological
— ConstantCosmological = AstronomicalSystem(Metric,lc/𝘤,lc,mc)
F=MT⁻¹, M, L=T, T, Q, Θ=M, N=M, J, A=𝟙, R=𝟙, C=𝟙
Cosmological scale UnitSystem
defined by darkenergydensity
.
julia> boltzmann(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> planckreduced(Cosmological)
𝘩²𝘤⁻⁴ΩΛ⋅H0²au⁻²mP⁻²2⁻²⁰3⁻⁷5⁻¹² = 2.888(43) × 10⁻¹²² [MT] Cosmological
julia> lightspeed(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> vacuumpermeability(Cosmological)
τ⋅2 = 12.566370614359172 [MTQ⁻²] Cosmological
julia> electronmass(Cosmological)
𝘩²𝘤⁻³R∞⋅α⁻²ΩΛ¹ᐟ²H0⋅au⁻¹mP⁻²τ¹ᐟ²2⁻⁸3⁻⁷ᐟ²5⁻⁶ = 3.566(26) × 10⁻⁸³ [M] Cosmological
julia> molarmass(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> luminousefficacy(Cosmological)
𝟏 = 1.0 [M⁻¹TJ] Cosmological
julia> hubble(Cosmological)
ΩΛ⁻¹ᐟ²τ¹ᐟ²2⋅3⁻¹ᐟ² = 3.487(14) [T⁻¹] Cosmological
julia> cosmological(Cosmological)
τ⋅2² = 25.132741228718345 [T⁻²] Cosmological
MeasureSystems.CosmologicalQuantum
— ConstantCosmologicalQuantum = AstronomicalSystem(Metric,tcq,lcq,mcq)
F=M², M, L=M⁻¹, T=M⁻¹, Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Cosmological quantum scale UnitSystem
defined by darkenergydensity
.
julia> boltzmann(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> planckreduced(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> lightspeed(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> vacuumpermeability(CosmologicalQuantum)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁼²] CosmologicalQuantum
julia> electronmass(CosmologicalQuantum)
𝘩¹ᐟ²R∞⋅α⁻²ΩΛ⁻¹ᐟ⁴H0⁻¹ᐟ²au¹ᐟ²mP⁻¹ᐟ²τ¹ᐟ⁴2¹³ᐟ²3⁷ᐟ⁴5³ = 2.2733(84) × 10⁸ [M] CosmologicalQuantum
julia> molarmass(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> luminousefficacy(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
Natural Unit Systems
With the introduction of the planckmass
a set of natural atomic unit systems can be derived in terms of the gravitational coupling constant.
julia> αG # (mₑ/mP)^2
𝘩²𝘤⁻²mP⁻²R∞²α⁻⁴2² = 1.75181e-45 ± 3.9e-50
Some of the notable variants include
Planck ::UnitSystem{1,1,1,1,√(4π*αG)}
PlanckGauss ::UnitSystem{1,1,1,4π,√αG}
Stoney ::UnitSystem{1,αinv,1,4π,√(αG*αinv)}
Hartree ::UnitSystem{1,1,αinv,4π/αinv^2,1}
Rydberg ::UnitSystem{1,1,2αinv,π/αinv^2,1/2}
Schrodinger ::UnitSystem{1,1,αinv,4π/αinv^2,√(αG*αinv)}
Electronic ::UnitSystem{1,αinv,1,4π,1}
Natural ::UnitSystem{1,1,1,1,1}
NaturalGauss ::UnitSystem{1,1,1,4π,1}
QCD ::UnitSystem{1,1,1,1,1/μₚₑ}
QCDGauss ::UnitSystem{1,1,1,4π,1/μₚₑ}
QCDoriginal ::UnitSystem{1,1,1,4π/αinv,1/μₚₑ}
MeasureSystems.Planck
— ConstantPlanck = UnitSystem(𝟏,𝟏,𝟏,𝟏,√(𝟐*τ*αG))
F=M², M, L=M⁻¹, T=M⁻¹, Q=𝟙, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Planck UnitSystem
with the electronmass
value √(4π*αG)
using gravitational coupling.
julia> boltzmann(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> planckreduced(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> lightspeed(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> vacuumpermeability(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> electronmass(Planck)
𝘩⋅𝘤⁻¹R∞⋅α⁻²mP⁻¹τ¹ᐟ²2³ᐟ² = 1.483708(16) × 10⁻²² [M] Planck
MeasureSystems.PlanckGauss
— ConstantPlanckGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,√αG)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Planck (Gauss) UnitSystem
with permeability
of 4π
and electronmass
coupling √αG
.
julia> boltzmann(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> planckreduced(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> lightspeed(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> vacuumpermeability(PlanckGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] PlanckGauss
julia> electronmass(PlanckGauss)
𝘩⋅𝘤⁻¹R∞⋅α⁻²mP⁻¹2 = 4.185463(46) × 10⁻²³ [mP] PlanckGauss
The well known PlanckGauss
values for length
, time
, mass
, and temperature
are:
julia> length(PlanckGauss,SI2019) # ℓP
𝘩⋅𝘤⁻¹mP⁻¹τ⁻¹ = 1.616255(18) × 10⁻³⁵ [m]/[mP⁻¹] PlanckGauss -> SI2019
julia> time(PlanckGauss,SI2019) # tP
𝘩⋅𝘤⁻²mP⁻¹τ⁻¹ = 5.391247(59) × 10⁻⁴⁴ [s]/[mP⁻¹] PlanckGauss -> SI2019
julia> mass(PlanckGauss,SI2019) # mP
mP = 2.176434(24) × 10⁻⁸ [kg]/[mP] PlanckGauss -> SI2019
julia> temperature(PlanckGauss,SI2019) # TP
kB⁻¹𝘤²mP = 1.416784(16) × 10³² [K]/[mP] PlanckGauss -> SI2019
MeasureSystems.Stoney
— ConstantStoney = UnitSystem(𝟏,𝟏/α,𝟏,𝟐*τ,√(αG/α))
F=MT⁻¹, M, L=T, T, Q, Θ=M, N=M, J, A=𝟙, R=𝟙, C=𝟙
Stoney UnitSystem
with permeability
of 4π
and electronmass
coupling √(αG/α)
.
julia> boltzmann(Stoney)
𝟏 = 1.0 [𝟙] Stoney
julia> planckreduced(Stoney)
α⁻¹ = 137.035999084(21) [MT] Stoney
julia> lightspeed(Stoney)
𝟏 = 1.0 [𝟙] Stoney
julia> vacuumpermeability(Stoney)
τ⋅2 = 12.566370614359172 [MTQ⁻²] Stoney
julia> electronmass(Stoney)
𝘩⋅𝘤⁻¹R∞⋅α⁻⁵ᐟ²mP⁻¹2 = 4.899602(54) × 10⁻²² [M] Stoney
The well known Stoney
values for length
, time
, mass
, and charge
are:
julia> length(Stoney,SI2019) # lS
𝘩⋅𝘤⁻¹α¹ᐟ²mP⁻¹τ⁻¹ = 1.380679(15) × 10⁻³⁶ [m]/[T] Stoney -> SI2019
julia> time(Stoney,SI2019) # tS
𝘩⋅𝘤⁻²α¹ᐟ²mP⁻¹τ⁻¹ = 4.605448(51) × 10⁻⁴⁵ [s]/[T] Stoney -> SI2019
julia> mass(Stoney,SI2019) # mS
α¹ᐟ²mP = 1.859209(21) × 10⁻⁹ [kg]/[M] Stoney -> SI2019
julia> charge(Stoney,SI2019) # qS
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] Stoney -> SI2019
MeasureSystems.Hartree
— ConstantHartree = UnitSystem(𝟏,𝟏,𝟏/α,𝟐*τ*α^2,𝟏)
F=L⁻³, M=𝟙, L=L, T=L², Q=Q, Θ=L⁻², N=𝟙, J=L⁻⁴, A=𝟙, R=𝟙, C=𝟙
Hartree atomic UnitSystem
based on bohr
radius and elementarycharge
scale.
julia> boltzmann(Hartree)
𝟏 = 1.0 [𝟙] Hartree
julia> planckreduced(Hartree)
𝟏 = 1.0 [𝟙] Hartree
julia> lightspeed(Hartree)
α⁻¹ = 137.035999084(21) [a₀⁻¹] Hartree
julia> vacuumpermeability(Hartree)
α²τ⋅2 = 0.00066917625662(21) [a₀⋅𝘦⁻²] Hartree
julia> electronmass(Hartree)
𝟏 = 1.0 [𝟙] Hartree
The well known Hartree
atomic unit values for length
, time
, mass
, and charge
are:
julia> length(Hartree,SI2019) # lA
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m]/[a₀] Hartree -> SI2019
julia> time(Hartree,SI2019) # tA
𝘤⁻¹R∞⁻¹τ⁻¹2⁻¹ = 2.4188843265857(46) × 10⁻¹⁷ [s]/[a₀²] Hartree -> SI2019
julia> mass(Hartree,SI2019) # mA
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg]/[𝟙] Hartree -> SI2019
julia> charge(Hartree,SI2019) # qA
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] Hartree -> SI2019
MeasureSystems.Rydberg
— ConstantRydberg = UnitSystem(𝟏,𝟏,𝟐/α,τ/𝟐*α^2,𝟏/𝟐)
F=MLT⁻², M, L, T, Q, Θ=T⁻¹, N=M, J=T², A=𝟙, R=𝟙, C=𝟙
Rydberg UnitSystem
with lightspeed
of 𝟐/α
and permeability
of π*α^2
.
julia> boltzmann(Rydberg)
𝟏 = 1.0 [ML²T⁻¹] Rydberg
julia> planckreduced(Rydberg)
𝟏 = 1.0 [ML²T⁻¹] Rydberg
julia> lightspeed(Rydberg)
α⁻¹2 = 274.071998168(42) [LT⁻¹] Rydberg
julia> vacuumpermeability(Rydberg)
α²τ⋅2⁻¹ = 0.000167294064155(51) [MLQ⁻²] Rydberg
julia> electronmass(Rydberg)
2⁻¹ = 0.5 [M] Rydberg
The well known Rydberg
atomic unit values for length
, time
, mass
, and charge
are:
julia> length(Rydberg,SI2019) # lR
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m]/[a₀] Rydberg -> SI2019
julia> time(Rydberg,SI2019) # tR
𝘤⁻¹R∞⁻¹τ⁻¹ = 4.8377686531713(93) × 10⁻¹⁷ [s]/[T] Rydberg -> SI2019
julia> mass(Rydberg,SI2019) # mR
𝘩⋅𝘤⁻¹R∞⋅α⁻²2² = 1.82187674031(56) × 10⁻³⁰ [kg]/[M] Rydberg -> SI2019
julia> charge(Rydberg,SI2019) # qR
𝘦⋅2⁻¹ᐟ² = 1.1329099625600371×10⁻¹⁹ [C]/[Q] Rydberg -> SI2019
MeasureSystems.Schrodinger
— ConstantSchrodinger = UnitSystem(𝟏,𝟏,𝟏/α,𝟐*τ*α^2,√(αG/α))
F=MLT⁻², M, L, T, Q, Θ=T⁻¹, N=M, J=T², A=𝟙, R=𝟙, C=𝟙
Schrodinger UnitSystem
with permeability
of 4π/αinv^2
and electronmass
of √(αG*αinv)
.
julia> boltzmann(Schrodinger)
𝟏 = 1.0 [ML²T⁻¹] Schrodinger
julia> planckreduced(Schrodinger)
𝟏 = 1.0 [ML²T⁻¹] Schrodinger
julia> lightspeed(Schrodinger)
α⁻¹ = 137.035999084(21) [LT⁻¹] Schrodinger
julia> vacuumpermeability(Schrodinger)
α²τ⋅2 = 0.00066917625662(21) [MLQ⁻²] Schrodinger
julia> electronmass(Schrodinger)
𝘩⋅𝘤⁻¹R∞⋅α⁻⁵ᐟ²mP⁻¹2 = 4.899602(54) × 10⁻²² [M] Schrodinger
MeasureSystems.Electronic
— ConstantElectronic = UnitSystem(𝟏,𝟏/α,𝟏,𝟐*τ,𝟏)
F=T⁻¹, M=𝟙, L=T, T, Q, Θ=𝟙, N=𝟙, J=T⁻¹, A=𝟙, R=𝟙, C=𝟙
Electronic UnitSystem
with planckreduced
of 1/α
and permeability
of 4π
.
julia> boltzmann(Electronic)
𝟏 = 1.0 [𝟙] Electronic
julia> planckreduced(Electronic)
α⁻¹ = 137.035999084(21) [T] Electronic
julia> lightspeed(Electronic)
𝟏 = 1.0 [𝟙] Electronic
julia> vacuumpermeability(Electronic)
τ⋅2 = 12.566370614359172 [TQ⁻²] Electronic
julia> electronmass(Electronic)
𝟏 = 1.0 [𝟙] Electronic
MeasureSystems.Natural
— ConstantNatural = UnitSystem(𝟏,𝟏,𝟏,𝟏,𝟏)
F=𝟙, M=𝟙, L=𝟙, T=𝟙, Q=𝟙, Θ=𝟙, N=𝟙, J=𝟙, A=𝟙, R=𝟙, C=𝟙
Natural UnitSystem
with all primary constants having unit value.
julia> boltzmann(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> planckreduced(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> lightspeed(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> vacuumpermeability(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> electronmass(Natural)
𝟏 = 1.0 [𝟙] Natural
The well known Natural
values for length
, time
, mass
, and charge
are:
julia> length(Natural,SI2019)
R∞⁻¹α²τ⁻¹2⁻¹ = 3.8615926796(12) × 10⁻¹³ [m]/[𝟙] Natural -> SI2019
julia> time(Natural,SI2019)
𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻¹ = 1.28808866819(39) × 10⁻²¹ [s]/[𝟙] Natural -> SI2019
julia> mass(Natural,SI2019)
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg]/[𝟙] Natural -> SI2019
julia> charge(Natural,SI2019)
𝘦⋅α⁻¹ᐟ²τ⁻¹ᐟ²2⁻¹ᐟ² = 5.29081768990(41) × 10⁻¹⁹ [C]/[𝟙] Natural -> SI2019
MeasureSystems.NaturalGauss
— ConstantNaturalGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,𝟏)
F=𝟙, M=𝟙, L=𝟙, T=𝟙, Q=Q, Θ=𝟙, N=𝟙, J=𝟙, A=𝟙, R=𝟙, C=𝟙
Natural (Gauss) UnitSystem
with the Gaussian permeability
value of 4π
.
julia> boltzmann(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> planckreduced(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> lightspeed(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> vacuumpermeability(NaturalGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] NaturalGauss
julia> electronmass(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
MeasureSystems.QCD
— ConstantQCD = UnitSystem(𝟏,𝟏,𝟏,𝟏,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=𝟙, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Qunatum chromodynamics UnitSystem
based on the protonmass
scale.
julia> boltzmann(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> planckreduced(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> lightspeed(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> vacuumpermeability(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> electronmass(QCD)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCD
The well known QCD
values for length
, time
, mass
, and charge
are:
julia> length(QCD,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCD -> SI2019
julia> time(QCD,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCD -> SI2019
julia> mass(QCD,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCD -> SI2019
julia> charge(QCD,SI2019) # qQCD
𝘦⋅α⁻¹ᐟ²τ⁻¹ᐟ²2⁻¹ᐟ² = 5.29081768990(41) × 10⁻¹⁹ [C]/[𝟙] QCD -> SI2019
MeasureSystems.QCDGauss
— ConstantQCDGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Qunatum chromodynamics (Gauss) UnitSystem
based on the protonmass
scale.
julia> boltzmann(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> planckreduced(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> lightspeed(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> vacuumpermeability(QCDGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] QCDGauss
julia> electronmass(QCDGauss)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCDGauss
The well known QCDGauss
values for length
, time
, mass
, and charge
are:
julia> length(QCDGauss,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCDGauss -> SI2019
julia> time(QCDGauss,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCDGauss -> SI2019
julia> mass(QCDGauss,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCDGauss -> SI2019
julia> charge(QCDGauss,SI2019) # qQCD
𝘦⋅α⁻¹ᐟ² = 1.87554603778(14) × 10⁻¹⁸ [C]/[𝘦ₙ] QCDGauss -> SI2019
MeasureSystems.QCDoriginal
— ConstantQCDoriginal = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ*α,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙
Qunatum chromodynamics (original) UnitSystem
scaled by protonmass
and elementarycharge
.
julia> boltzmann(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> planckreduced(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> lightspeed(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> vacuumpermeability(QCDoriginal)
α⋅τ⋅2 = 0.091701236889(14) [𝘦⁻²] QCDoriginal
julia> electronmass(QCDoriginal)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCDoriginal
The well known QCDoriginal
values for length
, time
, mass
, and charge
are:
julia> length(QCDoriginal,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCDoriginal -> SI2019
julia> time(QCDoriginal,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCDoriginal -> SI2019
julia> mass(QCDoriginal,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCDoriginal -> SI2019
julia> charge(QCDoriginal,SI2019) # qQCD
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] QCDoriginal -> SI2019
UnitSystem Index
MeasureSystems.British
MeasureSystems.CODATA
MeasureSystems.Conventional
MeasureSystems.Cosmological
MeasureSystems.CosmologicalQuantum
MeasureSystems.EMU
MeasureSystems.ESU
MeasureSystems.Electronic
MeasureSystems.Engineering
MeasureSystems.English
MeasureSystems.FFF
MeasureSystems.FPS
MeasureSystems.Gauss
MeasureSystems.Gravitational
MeasureSystems.Hartree
MeasureSystems.Hubble
MeasureSystems.IAU
MeasureSystems.IAUE
MeasureSystems.IAUJ
MeasureSystems.IPS
MeasureSystems.International
MeasureSystems.InternationalMean
MeasureSystems.KKH
MeasureSystems.LorentzHeaviside
MeasureSystems.MPH
MeasureSystems.MTS
MeasureSystems.Meridian
MeasureSystems.Metric
MeasureSystems.Natural
MeasureSystems.NaturalGauss
MeasureSystems.Nautical
MeasureSystems.Planck
MeasureSystems.PlanckGauss
MeasureSystems.QCD
MeasureSystems.QCDGauss
MeasureSystems.QCDoriginal
MeasureSystems.Rydberg
MeasureSystems.SI1976
MeasureSystems.SI2019
MeasureSystems.Schrodinger
MeasureSystems.Stoney
MeasureSystems.Survey