The UnitSystem
Physical unit system constants (Metric, English, Natural, etc...)
By default, UnitSystems provides a modern unified re-interpretation of various historical unit systems which were previously incompatible. In order to make each UnitSystem consistently compatible with each other, a few convenience assumptions are made. Specifically, it is assumed that all default modern unit systems share the same common Universe of dimensionless constants, although this can be optionally changed. Therefore, the philosophy is to characterize differences among UnitSystem instances by means of dimensional constants. As a result, all the defaults are ideal modern variants of these historical unit systems based on a common underlying Universe, which are completely consistent and compatible with each other. These default UnitSystem values are to be taken as a newly defined mutually-compatible recommended standard, verified to be consistent and coherent.
MeasureSystems.BritishMeasureSystems.CODATAMeasureSystems.ConventionalMeasureSystems.CosmologicalMeasureSystems.CosmologicalQuantumMeasureSystems.EMUMeasureSystems.ESUMeasureSystems.ElectronicMeasureSystems.EngineeringMeasureSystems.EnglishMeasureSystems.FFFMeasureSystems.FPSMeasureSystems.GaussMeasureSystems.GravitationalMeasureSystems.HartreeMeasureSystems.HubbleMeasureSystems.IAUMeasureSystems.IAUEMeasureSystems.IAUJMeasureSystems.IPSMeasureSystems.InternationalMeasureSystems.InternationalMeanMeasureSystems.KKHMeasureSystems.LorentzHeavisideMeasureSystems.MPHMeasureSystems.MTSMeasureSystems.MeridianMeasureSystems.MetricMeasureSystems.NaturalMeasureSystems.NaturalGaussMeasureSystems.NauticalMeasureSystems.PlanckMeasureSystems.PlanckGaussMeasureSystems.QCDMeasureSystems.QCDGaussMeasureSystems.QCDoriginalMeasureSystems.RydbergMeasureSystems.SI1976MeasureSystems.SI2019MeasureSystems.SchrodingerMeasureSystems.StoneyMeasureSystems.Survey
Metric SI Unit Systems
In the Systeme International d'Unites (the SI units) the UnitSystem constants are derived from the most accurate possible physical measurements and a few exactly defined constants. Exact values are the avogadro number, boltzmann constant, planck constant, lightspeed definition, and elementary charge definition.
Construction of UnitSystem instances based on specifying the the constants molarmass, the vacuumpermeability, and the molargas along with some other options is facilitated by MetricSystem. This construction helps characterize the differences between
MeasureSystems.Metric — ConstantMetric = MetricSystem(milli,𝟐*τ/𝟏𝟎^7)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Standard Metric system based on exact molarmass and vacuumpermeability.
julia> boltzmann(Metric) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 1.38064899953(43) × 10⁻²³ [J⋅K⁻¹] Metric
julia> planckreduced(Metric) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] Metric
julia> lightspeed(Metric) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Metric
julia> vacuumpermeability(Metric) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [H⋅m⁻¹] Metric
julia> electronmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Metric
julia> molarmass(Metric) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Metric
julia> luminousefficacy(Metric) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] MetricMeasureSystems.SI2019 — ConstantSI2019 = MetricSystem(Mᵤ,μ₀)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Systeme International d'Unites based on approximate molarmass and vacuumpermeability.
julia> boltzmann(SI2019) # J⋅K⁻¹
kB = 1.380649×10⁻²³ [J⋅K⁻¹] SI2019
julia> planckreduced(SI2019) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] SI2019
julia> lightspeed(SI2019) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] SI2019
julia> vacuumpermeability(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅2 = 1.25663706212(19) × 10⁻⁶ [H⋅m⁻¹] SI2019
julia> electronmass(SI2019) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] SI2019
julia> molarmass(SI2019) # kg⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 0.00099999999966(31) [kg⋅mol⁻¹] SI2019
julia> luminousefficacy(SI2019) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] SI2019MeasureSystems.SI1976 — ConstantSI1976 = MetricSystem(milli,𝟐*τ/𝟏𝟎^7,8.31432)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Reference UnitSystem with universal gas constant of 8.31432 from 1976 standard atmosphere.
julia> boltzmann(SI1976) # J⋅K⁻¹
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅8.31432 = 1.38062531722(43) × 10⁻²³ [kg⋅m²s⁻²K⁻¹] SI1976
julia> planckreduced(SI1976) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [kg⋅m²s⁻¹] SI1976
julia> lightspeed(SI1976) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] SI1976
julia> vacuumpermeability(SI1976) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [kg⋅m⋅C⁻²] SI1976
julia> electronmass(SI1976) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] SI1976
julia> molarmass(SI1976) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] SI1976
julia> luminousefficacy(SI1976) # lm⋅W⁻¹
Kcd = 683.01969009009 [kg⁻¹m⁻²s³lm] SI1976MeasureSystems.Engineering — ConstantEngineering = MetricSystem(milli,𝟐*τ/𝟏𝟎^7,Rᵤ,g₀)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙Standard Metric Engineering system based on kilogram and kilopond (kilogram-force) units.
julia> boltzmann(Engineering) # kgf⋅m⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹2⁴5³ = 1.40787016925(43) × 10⁻²⁴ [kgf⋅m⋅K⁻¹] Engineering
julia> planckreduced(Engineering) # kgf⋅m⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹τ⁻¹ = 1.0753639802033891×10⁻³⁵ [kgf⋅m⋅s⋅rad⁻¹] Engineering
julia> lightspeed(Engineering) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Engineering
julia> vacuumpermeability(Engineering) # kgf⋅s²⋅C⁻²
g₀⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2814131853751459×10⁻⁷ [kgf⋅s²C⁻²] Engineering
julia> electronmass(Engineering) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Engineering
julia> molarmass(Engineering) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Engineering
julia> luminousefficacy(Engineering) # lm⋅s⋅m⁻¹⋅kgf⁻¹
Kcd⋅g₀ = 6698.135043821981 [kgf⁻¹m⁻¹s⋅lm] Engineering
julia> gravity(Engineering) # kg⋅m⋅kgf⁻¹⋅s⁻²
g₀ = 9.80665 [kgf⁻¹kg⋅m⋅s⁻²] EngineeringAdditional Metric variants with angle scaling include MetricTurn, MetricSpatian, MetricGradian, MetricDegree, MetricArcminute, MetricArcsecond.
Historically, the josephson and klitzing constants have been used to define Conventional and CODATA variants.
MeasureSystems.Conventional — ConstantConventional = ConventionalSystem(RK1990,KJ2014)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Conventional electronic UnitSystem with 1990 tuned josephson and klitzing constants.
julia> josephson(Conventional) # Hz⋅V⁻¹
KJ90 = 4.835979×10¹⁴ [Hz⋅V⁻¹] Conventional
julia> klitzing(Conventional) # Ω
RK90 = 25812.807 [Ω] Conventional
julia> boltzmann(Conventional) # J⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹RK90⁻¹KJ90⁻²2⁶5³ = 1.38064872956(43) × 10⁻²³ [J⋅K⁻¹] Conventional
julia> planckreduced(Conventional) # J⋅s⋅rad⁻¹
RK90⁻¹KJ90⁻²τ⁻¹2² = 1.0545716114388567×10⁻³⁴ [J⋅s] Conventional
julia> lightspeed(Conventional) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Conventional
julia> vacuumpermeability(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅2 = 1.25663703976(19) × 10⁻⁶ [H⋅m⁻¹] Conventional
julia> electronmass(Conventional) # kg
𝘤⁻¹R∞⋅α⁻²RK90⁻¹KJ90⁻²2³ = 9.1093819203(28) × 10⁻³¹ [kg] Conventional
julia> molarmass(Conventional) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Conventional
julia> luminousefficacy(Conventional) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK90⋅KJ90²2⁻² = 683.0198236454071 [lm⋅W⁻¹] ConventionalMeasureSystems.CODATA — ConstantCODATA = ConventionalSystem(RK2014,KJ2014,Rᵤ2014)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Reference UnitSystem based on Committee on Data of the International Science Council.
julia> josephson(CODATA) # Hz⋅V⁻¹
KJ = 4.835978525(30) × 10¹⁴ [Hz⋅V⁻¹] CODATA
julia> klitzing(CODATA) # Ω
RK = 25812.8074555(59) [Ω] CODATA
julia> boltzmann(CODATA) # J⋅K⁻¹
𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹RK⁻¹KJ⁻²Rᵤ2014⋅2⁶5³ = 1.38064851(80) × 10⁻²³ [J⋅K⁻¹] CODATA
julia> planckreduced(CODATA) # J⋅s⋅rad⁻¹
RK⁻¹KJ⁻²τ⁻¹2² = 1.054571800(13) × 10⁻³⁴ [J⋅s] CODATA
julia> lightspeed(CODATA) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] CODATA
julia> vacuumpermeability(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅2 = 1.25663706194(35) × 10⁻⁶ [H⋅m⁻¹] CODATA
julia> electronmass(CODATA) # kg
𝘤⁻¹R∞⋅α⁻²RK⁻¹KJ⁻²2³ = 9.10938355(11) × 10⁻³¹ [kg] CODATA
julia> molarmass(CODATA) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] CODATA
julia> luminousefficacy(CODATA) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK⋅KJ²2⁻² = 683.0197015(85) [lm⋅W⁻¹] CODATAOriginally, the practical units where specified by resistance and electricpotential.
MeasureSystems.International — ConstantInternational = ElectricSystem(Metric,Ωᵢₜ = 1.000495,Vᵢₜ = 1.00033)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙International UnitSystem with United States measurements of Ωᵢₜ and Vᵢₜ.
julia> resistance(International,Metric) # Ω⋅Ω⁻¹
Ωᵢₜ = 1.000495 [kg⋅m⋅s⁻²C⁻²]/[kg⋅m⋅s⁻²C⁻²] International -> Metric
julia> electricpotential(International,Metric) # V⋅V⁻¹
Vᵢₜ = 1.00033 [V⋅m⁻¹]/[V⋅m⁻¹] International -> Metric
julia> boltzmann(International) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁴5³ = 1.38042119247(42) × 10⁻²³ [J⋅K⁻¹] International
julia> planckreduced(International) # J⋅s⋅rad⁻¹
𝘩⋅Ωᵢₜ⋅Vᵢₜ⁻²τ⁻¹ = 1.0543978133151816×10⁻³⁴ [J⋅s] International
julia> lightspeed(International) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] International
julia> vacuumpermeability(International) # H⋅m⁻¹
Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2560153338456637×10⁻⁶ [H⋅m⁻¹] International
julia> electronmass(International) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²Ωᵢₜ⋅Vᵢₜ⁻²2 = 9.1078806534(28) × 10⁻³¹ [kg] International
julia> molarmass(International) # kg⋅mol⁻¹
Ωᵢₜ⋅Vᵢₜ⁻²2⁻³5⁻³ = 0.0009998350000179567 [kg⋅mol⁻¹] International
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] InternationalMeasureSystems.InternationalMean — ConstantInternationalMean = ElectricSystem(Metric,1.00049,1.00034)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙International UnitSystem with mean measurements of Ωᵢₜ and Vᵢₜ.
julia> resistance(InternationalMean,Metric) # Ω⋅Ω⁻¹
1.00049 = 1.00049 [kg⋅m⋅s⁻²C⁻²]/[kg⋅m⋅s⁻²C⁻²] InternationalMean -> Metric
julia> electricpotential(InternationalMean,Metric) # V⋅V⁻¹
1.00034 = 1.00034 [V⋅m⁻¹]/[V⋅m⁻¹] InternationalMean -> Metric
julia> boltzmann(InternationalMean) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³/1.0001900224889804 = 1.38038669501(42) × 10⁻²³ [J⋅K⁻¹] InternationalMean
julia> planckreduced(InternationalMean) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹/1.0001900224889804 = 1.0543714633563797×10⁻³⁴ [J⋅s] InternationalMean
julia> lightspeed(InternationalMean) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] InternationalMean
julia> vacuumpermeability(InternationalMean) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷/1.00049 = 1.2560216108466024×10⁻⁶ [H⋅m⁻¹] InternationalMean
julia> electronmass(InternationalMean) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2/1.0001900224889804 = 9.1076530427(28) × 10⁻³¹ [kg] InternationalMean
julia> molarmass(InternationalMean) # kg⋅mol⁻¹
2⁻³5⁻³/1.0001900224889804 = 0.0009998100136127059 [kg⋅mol⁻¹] InternationalMean
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] InternationalElectromagnetic CGS Systems
Alternatives to the SI unit system are the centimetre-gram-second variants, where the constants are rescaled with centi meter and milli kilogram units along with introduction of additional rationalization and lorentz constants or electromagnetic units.
MeasureSystems.EMU — ConstantEMU = GaussSystem(Metric,𝟏,𝟐*τ)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L¹ᐟ², Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Centimetre-gram-second UnitSystem variant based on EMU (non-rationalized).
julia> boltzmann(EMU) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] EMU
julia> planckreduced(EMU) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] EMU
julia> lightspeed(EMU) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] EMU
julia> vacuumpermeability(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> electronmass(EMU) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] EMU
julia> molarmass(EMU) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] EMU
julia> luminousefficacy(EMU) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] EMU
julia> rationalization(EMU)
τ⋅2 = 12.566370614359172 [𝟙] EMUMeasureSystems.ESU — ConstantESU = GaussSystem(Metric,(𝟏𝟎*𝘤)^-2,𝟐*τ)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Centimetre-gram-second UnitSystem variant based on ESU (non-rationalized).
julia> boltzmann(ESU) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] ESU
julia> planckreduced(ESU) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] ESU
julia> lightspeed(ESU) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] ESU
julia> vacuumpermeability(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> electronmass(ESU) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] ESU
julia> molarmass(ESU) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] ESU
julia> luminousefficacy(ESU) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] ESU
julia> rationalization(ESU)
τ⋅2 = 12.566370614359172 [𝟙] ESUMeasureSystems.Gauss — ConstantGauss = GaussSystem(Metric,𝟏,𝟐*τ,𝟏𝟎^-2/𝘤)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=LT⁻¹Centimetre-gram-second UnitSystem variant CGS (Gauss-Lorentz, non-rationalized).
julia> boltzmann(Gauss) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] Gauss
julia> planckreduced(Gauss) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] Gauss
julia> lightspeed(Gauss) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] Gauss
julia> vacuumpermeability(Gauss) # statH⋅cm⁻¹
𝟏 = 1.0 [𝟙] Gauss
julia> electronmass(Gauss) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] Gauss
julia> molarmass(Gauss) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] Gauss
julia> luminousefficacy(Gauss) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] Gauss
julia> rationalization(Gauss)
τ⋅2 = 12.566370614359172 [𝟙] Gauss
julia> lorentz(Gauss)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] GaussMeasureSystems.LorentzHeaviside — ConstantLorentzHeaviside = GaussSystem(Metric,𝟏,𝟏,centi/𝘤)
F=MLT⁻², M=M, L=L, T=T, Q=M¹ᐟ²L³ᐟ²T⁻¹, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=LT⁻¹Centimetre-gram-second UnitSystem variant HLU (Heaviside-Lorentz, rationalized).
julia> boltzmann(LorentzHeaviside) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] LorentzHeaviside
julia> planckreduced(LorentzHeaviside) # erg⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁷5⁷ = 1.0545718176461565×10⁻²⁷ [erg⋅s] LorentzHeaviside
julia> lightspeed(LorentzHeaviside) # cm⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [cm⋅s⁻¹] LorentzHeaviside
julia> vacuumpermeability(HLU) # hlH⋅cm⁻¹
𝟏 = 1.0 [𝟙] LorentzHeaviside
julia> electronmass(LorentzHeaviside) # g
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁴5³ = 9.1093837016(28) × 10⁻²⁸ [g] LorentzHeaviside
julia> molarmass(LorentzHeaviside) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] LorentzHeaviside
julia> luminousefficacy(LorentzHeaviside) # lm⋅s⋅erg⁻¹
Kcd⋅2⁻⁷5⁻⁷ = 6.8301969009009×10⁻⁵ [lm⋅s⋅erg⁻¹] LorentzHeaviside
julia> rationalization(LorentzHeaviside)
𝟏 = 1.0 [𝟙] LorentzHeaviside
julia> lorentz(LorentzHeaviside)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeavisideThere are multiple choices of elctromagnetic units for these variants based on electromagnetic units, electrostatic units, Gaussian non-rationalized units, and Lorentz-Heaviside rationalized units. Note that CGS is an alias for the Gauss system.
Modified (Entropy) Unit Systems
Most other un-natural unit systems are derived from the construction above by rescaling time, length, mass, temperature, and gravity; which results in modified entropy constants:
MeasureSystems.Gravitational — ConstantGravitational = EntropySystem(Metric,𝟏,𝟏,g₀)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Standard Gravitational system based on hyl and kilopond units.
julia> boltzmann(Gravitational) # kgf⋅m⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹2⁴5³ = 1.40787016925(43) × 10⁻²⁴ [kgf⋅m⋅K⁻¹] Gravitational
julia> planckreduced(Gravitational) # kgf⋅m⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹τ⁻¹ = 1.0753639802033891×10⁻³⁵ [kgf⋅m⋅s] Gravitational
julia> lightspeed(Gravitational) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Gravitational
julia> vacuumpermeability(Gravitational) # H⋅m⁻¹
g₀⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2814131853751459×10⁻⁷ [kgf⋅s²C⁻²] Gravitational
julia> electronmass(Gravitational) # hyl
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹2 = 9.2889862507(28) × 10⁻³² [hyl] Gravitational
julia> molarmass(Gravitational) # hyl⋅mol⁻¹
g₀⁻¹2⁻³5⁻³ = 0.00010197162129779284 [kgf⋅m⁻¹s²mol⁻¹] Gravitational
julia> luminousefficacy(Gravitational) # lm⋅s⋅m⁻¹⋅kgf⁻¹
Kcd⋅g₀ = 6698.135043821981 [kgf⁻¹m⁻¹s⋅lm] GravitationalMeasureSystems.MTS — ConstantMTS = EntropySystem(SI2019,𝟏,𝟏,kilo)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Metre-tonne-second UnitSystem variant of Metric system.
julia> boltzmann(MTS) # kJ⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 1.38064899953(43) × 10⁻²⁶ [t⋅m²s⁻²K⁻¹] MTS
julia> planckreduced(MTS) # kJ⋅s⋅rad⁻¹
𝘩⋅τ⁻¹2⁻³5⁻³ = 1.0545718176461566×10⁻³⁷ [t⋅m²s⁻¹] MTS
julia> lightspeed(MTS) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] MTS
julia> vacuumpermeability(MTS) # kH⋅m⁻¹
τ⋅2⁻⁹5⁻¹⁰ = 1.2566370614359174×10⁻⁹ [t⋅m⋅C⁻²] MTS
julia> electronmass(MTS) # t
𝘩⋅𝘤⁻¹R∞⋅α⁻²2⁻²5⁻³ = 9.1093837016(28) × 10⁻³⁴ [t] MTS
julia> molarmass(MTS) # t⋅mol⁻¹
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [t⋅mol⁻¹] MTS
julia> luminousefficacy(MTS) # lm⋅kW⁻¹
Kcd⋅2³5³ = 683019.6900900899 [t⁻¹m⁻²s³lm] MTSMeasureSystems.KKH — ConstantKKH = EntropySystem(Metric,HOUR,kilo,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Kilometer-kilogram-hour UnitSystem variant of Metric system.
julia> boltzmann(KKH) # kg⋅km²⋅h⁻²⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁶3⁴5 = 1.78932110338(55) × 10⁻²² [kg⋅km²h⁻²K⁻¹] KKH
julia> planckreduced(KKH) # kg⋅km²⋅h⁻¹
𝘩⋅τ⁻¹2⁻²3²5⁻⁴ = 3.7964585435261634×10⁻³⁷ [kg⋅km²h⁻¹] KKH
julia> lightspeed(KKH) # km⋅hr⁻¹
𝘤⋅2⋅3²5⁻¹ = 1.0792528488×10⁹ [km⋅h⁻¹] KKH
julia> vacuumpermeability(KKH) # kg⋅km⋅C⁻²
τ⋅2⁻⁹5⁻¹⁰ = 1.2566370614359174×10⁻⁹ [kg⋅km⋅C⁻²] KKH
julia> electronmass(KKH) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] KKH
julia> molarmass(KKH) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] KKH
julia> luminousefficacy(KKH) # lm⋅h³⋅kg⁻¹⋅km⁻²
Kcd⋅2⁻⁶3⁻⁶ = 0.014639482383618185 [kg⁻¹km⁻²h³lm] KKHMeasureSystems.MPH — ConstantMPH = EntropySystem(FPS,HOUR,mi,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Mile-pound-hour specification based on FPS absolute UnitSystem.
julia> boltzmann(MPH) # lbf⋅mi²⋅hr⁻²⋅F⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2²5⁶11⁻² = 8.4615956484(26) × 10⁻²³ [lb⋅mi²h⁻²°R⁻¹] MPH
julia> planckreduced(MPH) # lbf⋅mi²⋅hr⁻¹⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹2⁻⁶11⁻² = 3.2315817800735083×10⁻³⁷ [lb⋅mi²h⁻¹] MPH
julia> lightspeed(MPH) # mi⋅hr⁻¹
𝘤⋅ft⁻¹2⁻¹3⋅5⋅11⁻¹ = 6.706166293843951×10⁸ [mi⋅h⁻¹] MPH
julia> vacuumpermeability(MPH) # lbm⋅mi⋅C⁻²
ft⁻¹lb⁻¹τ⋅2⁻¹¹3⁻¹5⁻⁸11⁻¹ = 1.7214532710813804×10⁻⁹ [lb⋅mi⋅C⁻²] MPH
julia> electronmass(MPH) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lb] MPH
julia> molarmass(MPH) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lb⋅lb-mol⁻¹] MPH
julia> luminousefficacy(MPH) # lm⋅h³⋅lb⁻¹⋅mi⁻²
Kcd⋅ft²lb⋅2⁻²3⁻⁴5⁻⁴11² = 0.017198446999173198 [lb⁻¹mi⁻²h³lm] MPHMeasureSystems.Nautical — ConstantNautical = EntropySystem(Metric,HOUR,nm,em^3,𝟏,τ*𝟑^3/𝟐^10/𝟓^12,milli)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Nautical miles, kilo-earthgram, hour specification based on Meridian definition.
julia> greatcircle(Nautical) # nm
2⁵3³5² = 21600.0 [nm] Nautical
julia> boltzmann(Nautical) # keg⋅nm²⋅hr⁻²⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁵2⁴⁹3¹⁰5³² = 5.180046618(26) × 10⁻²³ [keg⋅nm²h⁻²K⁻¹] Nautical
julia> planckreduced(Nautical) # keg⋅nm²⋅hr⁻¹⋅rad⁻¹
𝘩⋅g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁶2⁴¹3⁸5²⁷ = 1.0990666907(55) × 10⁻³⁷ [keg⋅nm²h⁻¹] Nautical
julia> lightspeed(Nautical) # nm⋅hr⁻¹
𝘤⋅g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹3⁵5⁴ = 5.8195383759(58) × 10⁸ [nm⋅h⁻¹] Nautical
julia> vacuumpermeability(Nautical) # keg⋅nm⋅eC⁻²
τ⋅2⁻¹⁰3³5⁻¹² = 6.785840131753954×10⁻¹⁰ [keg⋅nm⋅eC⁻²] Nautical
julia> electronmass(Nautical) # keg
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀³ᐟ²GME⁻³ᐟ²τ⁻³2²⁸5²¹ = 9.069925385(27) × 10⁻³¹ [keg] Nautical
julia> molarmass(Nautical) # keg⋅eg-mol⁻¹
2⁻³5⁻³ = 0.001 [keg⋅eg-mol⁻¹] Nautical
julia> luminousefficacy(Nautical) # lm⋅h³⋅keg⁻¹⋅nm⁻²
Kcd⋅g₀⁻⁵ᐟ²GME⁵ᐟ²τ⁵2⁻⁴⁹3⁻¹²5⁻³¹ = 0.05056853095(25) [keg⁻¹nm⁻²h³lm] NauticalMeasureSystems.Meridian — ConstantMeridian = EntropySystem(Metric,𝟏,em,em^3,𝟏,τ/𝟐^6/𝟓^7,milli)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Modern ideal Meridian system defined by France's original earthmeter definition.
julia> greatcircle(Meridian) # em
2⁹5⁷ = 4.0×10⁷ [em] Meridian
julia> boltzmann(Meridian) # eJ⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁵2⁴⁹5³⁸ = 1.3706960050(69) × 10⁻²³ [eJ⋅K⁻¹] Meridian
julia> planckreduced(Meridian) # eJ⋅s⋅rad⁻¹
𝘩⋅g₀⁵ᐟ²GME⁻⁵ᐟ²τ⁻⁶2⁴⁵5³⁵ = 1.0469694890(53) × 10⁻³⁴ [eJ⋅s] Meridian
julia> lightspeed(Meridian) # em⋅s⁻¹
𝘤⋅g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 2.9935896996(3) × 10⁸ [em⋅s⁻¹] Meridian
julia> vacuumpermeability(Meridian) # kegf⋅s²⋅eC⁻²
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [eH⋅em⁻¹] Meridian
julia> electronmass(Meridian) # keg
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀³ᐟ²GME⁻³ᐟ²τ⁻³2²⁸5²¹ = 9.069925385(27) × 10⁻³¹ [keg] Meridian
julia> molarmass(Meridian) # keg⋅eg-mol⁻¹
2⁻³5⁻³ = 0.001 [keg⋅eg-mol⁻¹] Meridian
julia> luminousefficacy(Meridian) # lm⋅W⁻¹
Kcd⋅g₀⁻⁵ᐟ²GME⁵ᐟ²τ⁵2⁻⁴⁵5⁻³⁵ = 687.9792808(35) [lm⋅eW⁻¹] MeridianFoot-Pound-Second-Rankine
In Britain and the United States an English system of engineering units was commonly used.
MeasureSystems.FPS — ConstantFPS = RankineSystem(Metric,ft,lb)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Absolute English UnitSystem based on the foot, pound, second, and poundal.
julia> boltzmann(FPS) # ft⋅pdl⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2⁴3⁻²5⁴ = 1.82018324169(56) × 10⁻²² [lb⋅ft²s⁻²°R⁻¹] FPS
julia> planckreduced(FPS) # ft⋅pdl⋅s⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹ = 2.5025369304889247×10⁻³³ [lb⋅ft²s⁻¹] FPS
julia> lightspeed(FPS) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] FPS
julia> vacuumpermeability(FPS) # lb⋅ft⋅C⁻²
ft⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 9.089273271309688×10⁻⁶ [lb⋅ft⋅C⁻²] FPS
julia> electronmass(FPS) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lb] FPS
julia> molarmass(FPS) # lb⋅lb-mol⁻¹
𝟏 = 1.0 [lb⋅lb-mol⁻¹] FPS
julia> luminousefficacy(FPS) # lm⋅s³⋅lb⁻¹⋅ft⁻²
Kcd⋅ft²lb = 28.78252493663283 [lb⁻¹ft⁻²s³lm] FPSMeasureSystems.IPS — ConstantIPS = RankineSystem(Metric,ft/𝟐^2/𝟑,lb*g₀*𝟐^2*𝟑/ft)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙British Gravitational UnitSystem historically used in the United States of America.
julia> boltzmann(IPS) # in⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁶3⁻¹5⁴ = 6.7887629566(21) × 10⁻²³ [lb⋅in⋅°R⁻¹] IPS
julia> planckreduced(IPS) # in⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹2²3 = 9.333747076683978×10⁻³⁴ [lb⋅in⋅s] IPS
julia> lightspeed(IPS) # in⋅s⁻¹
𝘤⋅ft⁻¹2²3 = 1.1802852677165354×10¹⁰ [in⋅s⁻¹] IPS
julia> vacuumpermeability(IPS) # slinch⋅in⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lb⋅s²C⁻²] IPS
julia> electronmass(IPS) # slinch
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹ft⋅lb⁻¹2⁻¹3⁻¹ = 5.2015921425(16) × 10⁻³³ [slinch] IPS
julia> molarmass(IPS) # slinch⋅slinch-mol⁻¹
𝟏 = 1.0 [lb⋅in⁻¹s²slinch-mol⁻¹] IPS
julia> luminousefficacy(IPS) # lm⋅s⋅in⁻¹⋅lb⁻¹
Kcd⋅g₀⋅ft⋅lb⋅2⁻²3⁻¹ = 77.17086290732456 [lb⁻¹in⁻¹s⋅lm] IPSMeasureSystems.British — ConstantBritish = RankineSystem(Metric,ft,slug)
F=F, M=FL⁻¹T², L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙British Gravitational UnitSystem historically used by Britain and United States.
julia> boltzmann(British) # ft⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lb⋅ft⋅°R⁻¹] British
julia> planckreduced(British) # ft⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lb⋅ft⋅s] British
julia> lightspeed(British) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] British
julia> vacuumpermeability(British) # slug⋅ft⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lb⋅s²C⁻²] British
julia> electronmass(British) # slugs
𝘩⋅𝘤⁻¹R∞⋅α⁻²g₀⁻¹ft⋅lb⁻¹2 = 6.2419105710(19) × 10⁻³² [slug] British
julia> molarmass(British) # slug⋅slug-mol⁻¹
𝟏 = 1.0 [lb⋅ft⁻¹s²slug-mol⁻¹] British
julia> luminousefficacy(British) # lm⋅s⋅ft⁻¹⋅lb⁻¹
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lb⁻¹ft⁻¹s⋅lm] BritishMeasureSystems.English — ConstantEnglish = RankineSystem(Metric,ft,lb,g₀/ft)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙English Engineering UnitSystem historically used in the United States of America.
julia> boltzmann(English) # ft⋅lbf⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lbf⋅ft⋅°R⁻¹] English
julia> planckreduced(English) # ft⋅lbf⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lbf⋅ft⋅s⋅rad⁻¹] English
julia> lightspeed(English) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] English
julia> vacuumpermeability(English) # lbm⋅ft⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lbf⋅s²C⁻²] English
julia> electronmass(English) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] English
julia> molarmass(English) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lbm⋅lb-mol⁻¹] English
julia> luminousefficacy(English) # lm⋅s⋅ft⁻¹⋅lbf⁻¹
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lbf⁻¹ft⁻¹s⋅lm] English
julia> gravity(English) # lbm⋅ft⋅lbf⁻¹⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [lbf⁻¹lbm⋅ft⋅s⁻²] EnglishMeasureSystems.Survey — ConstantSurvey = RankineSystem(Metric,ftUS,lb,g₀/ftUS)
F=F, M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=A, R=𝟙, C=𝟙English Engineering UnitSystem based on the geophysical US survey foot (1200/3937).
julia> boltzmann(Survey) # ftUS⋅lbf⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ftUS⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6572911492(17) × 10⁻²⁴ [lbf⋅ft⋅°R⁻¹] Survey
julia> planckreduced(Survey) # ftUS⋅lbf⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ftUS⁻¹lb⁻¹τ⁻¹ = 7.77810700765819×10⁻³⁵ [lbf⋅ft⋅s⋅rad⁻¹] Survey
julia> lightspeed(Survey) # ftUS⋅s⁻¹
𝘤⋅ftUS⁻¹ = 9.835690892883334×10⁸ [ft⋅s⁻¹] Survey
julia> vacuumpermeability(Survey) # lbm⋅ftUS⋅C⁻²
g₀⁻¹lb⁻¹τ⋅2⁻⁶5⁻⁷ = 2.825032496413345×10⁻⁷ [lbf⋅s²C⁻²] Survey
julia> electronmass(Survey) # lbm
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] Survey
julia> molarmass(Survey) # lbm⋅lb-mol⁻¹
𝟏 = 1.0 [lbm⋅lb-mol⁻¹] Survey
julia> luminousefficacy(Survey) # lm⋅s⋅ft⁻¹⋅lbf⁻¹
Kcd⋅g₀⋅ftUS⋅lb = 926.0522069923087 [lbf⁻¹ft⁻¹s⋅lm] Survey
julia> gravity(Survey) # lbm⋅ftUS⋅lbf⁻¹⋅s⁻²
g₀⋅ftUS⁻¹ = 32.17398420833334 [lbf⁻¹lbm⋅ft⋅s⁻²] SurveyAn impractical yet humorous unit system is the FFF specification.
MeasureSystems.FFF — ConstantFFF = EntropySystem(Metric,𝟐*𝟕*DAY,fur,𝟐*𝟑^2*𝟓*lb,°R,0,𝟏)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Furlong–firkin–fortnight FFF is a humorous UnitSystem based on unusal impractical units.
julia> boltzmann(FFF) # fir⋅fur²⋅ftn⁻²⋅F⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻²lb⁻¹2¹⁵5⁵7²11⁻² = 6.7931043720(21) × 10⁻¹⁸ [fir⋅fur²ftn⁻²°R⁻¹] FFF
julia> planckreduced(FFF) # fir⋅fur²⋅ftn⁻¹⋅rad⁻¹
𝘩⋅ft⁻²lb⁻¹τ⁻¹2³3⁻¹5⁻¹7⋅11⁻² = 7.721326066522302×10⁻³⁵ [fir⋅fur²ftn⁻¹] FFF
julia> lightspeed(FFF) # fur⋅ftn⁻¹
𝘤⋅ft⁻¹2⁶3²5⋅7⋅11⁻¹ = 1.8026174997852542×10¹² [fur⋅ftn⁻¹] FFF
julia> vacuumpermeability(FFF) # fir⋅fur⋅Inf⁻²
𝟏/Inf = 0.0 [fir⋅fur⋅Inf⁻²] FFF
julia> electronmass(FFF) # fir
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹3⁻²5⁻¹ = 2.23141704217(68) × 10⁻³² [fir] FFF
julia> molarmass(FFF) # fir⋅fir-mol⁻¹
𝟏 = 1.0 [fir⋅fir-mol⁻¹] FFF
julia> luminousefficacy(FFF) # lm⋅ftn³⋅fir⁻¹⋅fur⁻²
Kcd⋅ft²lb⋅2⁻¹⁹3⁻⁵5⁻³7⁻³11² = 6.375788993269436×10⁻¹⁰ [fir⁻¹fur⁻²ftn³lm] FFFAstronomical Unit Systems
The International Astronomical Union (IAU) units are based on the solar mass, distance from the sun to the earth, and the length of a terrestrial day.
MeasureSystems.IAU — ConstantIAU☉ = EntropySystem(Metric,DAY,au,GM☉/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Solar UnitSystem defined by International Astronomical Union and solarmass.
julia> boltzmann(IAU) # M⊙⋅au²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹au⁻⁵kG⁻²mP⁻²τ⁻³2⁴⁶3²⁰5¹⁷ = 2.316083(51) × 10⁻⁶⁶ [M☉⋅au²D⁻²K⁻¹] IAU☉
julia> planckreduced(IAU) # M⊙⋅au²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅au⁻⁵kG⁻²mP⁻²τ⁻⁴2³⁵3¹⁷5¹² = 2.047544(45) × 10⁻⁸² [M☉⋅au²D⁻¹] IAU☉
julia> lightspeed(IAU) # au⋅D⁻¹
𝘤⋅au⁻¹2⁷3³5² = 173.1446326742(35) [au⋅D⁻¹] IAU☉
julia> vacuumpermeability(IAU) # M⊙⋅au²⋅C⁻²
𝘩⋅𝘤⋅au⁻⁴kG⁻²mP⁻²τ⁻²2²²3¹⁴5³ = 4.224533(93) × 10⁻⁴⁸ [M☉⋅au⋅C⁻²] IAU☉
julia> electronmass(IAU) # M⊙
𝘩²R∞⋅α⁻²au⁻³kG⁻²mP⁻²τ⁻³2²⁹3¹⁴5¹⁰ = 4.58124(10) × 10⁻⁶¹ [M☉] IAU☉
julia> molarmass(IAU) # M☉⋅mol⁻¹
𝘩⋅𝘤⋅au⁻³kG⁻²mP⁻²τ⁻³2²⁵3¹⁴5⁷ = 5.02915(11) × 10⁻³⁴ [M☉⋅mol⁻¹] IAU☉
julia> luminousefficacy(IAU) # lm⋅D³⋅M☉⁻¹⋅au⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅au⁵kG²mP²τ³2⁻⁴⁹3⁻²³5⁻¹⁶ = 4.71247(10) × 10⁴⁰ [M☉⁻¹au⁻²D³lm] IAU☉
julia> gaussgravitation(IAU) # D⁻¹
kG⋅τ⋅2⁻⁷3⁻⁴5⁻³ = 0.017202098964713464 [D⁻¹] IAU☉MeasureSystems.IAUE — ConstantIAUE = EntropySystem(Metric,DAY,LD,GME/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Astronomical (Earth) UnitSystem defined by lunardistance around the earthmass.
julia> boltzmann(IAUE) # ME⋅LD²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹mP⁻²GME⁻¹τ⁻¹2¹²5/202692169 = 1.167923(26) × 10⁻⁵⁵ [ME⋅LD²D⁻²K⁻¹] IAUE
julia> planckreduced(IAUE) # ME⋅LD²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅mP⁻²GME⁻¹τ⁻²2⋅3⁻³5⁻⁴/202692169 = 1.032508(23) × 10⁻⁷¹ [ME⋅LD²D⁻¹] IAUE
julia> lightspeed(IAUE) # LD⋅D⁻¹
𝘤⋅2⁴5⁻¹/14237 = 67383.2876027253 [LD⋅D⁻¹] IAUE
julia> vacuumpermeability(IAUE) # ME⋅LD²⋅C⁻²
𝘩⋅𝘤⋅mP⁻²GME⁻¹2⁻⁹3⁻³5⁻¹⁰/14237 = 5.47389(12) × 10⁻⁴⁰ [ME⋅LD⋅C⁻²] IAUE
julia> electronmass(IAUE) # ME
𝘩²R∞⋅α⁻²mP⁻²GME⁻¹τ⁻¹2 = 1.525306(34) × 10⁻⁵⁵ [ME] IAUE
julia> molarmass(IAUE) # ME⋅mol⁻¹
𝘩⋅𝘤⋅mP⁻²GME⁻¹τ⁻¹2⁻³5⁻³ = 1.674434(37) × 10⁻²⁸ [ME⋅mol⁻¹] IAUE
julia> luminousefficacy(IAUE) # lm⋅D³⋅ME⁻¹⋅LD⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅mP²GME⋅τ⋅2⁻¹⁵3⁻³⋅202692169 = 9.34520(21) × 10²⁹ [ME⁻¹LD⁻²D³lm] IAUE
julia> turn(IAU)/gaussianmonth(IAU) # D⁻¹
GME¹ᐟ²2⁵ᐟ²3⁻³ᐟ²5⁻⁵ᐟ²/1.6987431854323947×10⁶ = 0.22888074402(23) [D⁻¹] IAU☉MeasureSystems.IAUJ — ConstantIAUJ = EntropySystem(Metric,DAY,JD,GMJ/G)
F=MLT⁻², M=M, L=L, T=T, Q=Q, Θ=Θ, N=N, J=J, A=𝟙, R=𝟙, C=𝟙Astronomical (Jupiter) UnitSystem defined by jupiterdistance around the solarmass.
julia> boltzmann(IAUJ) # MJ⋅JD²⋅D⁻²⋅K⁻¹
kB⋅NA⋅𝘩²R∞⋅α⁻²μₑᵤ⁻¹mP⁻²GMJ⁻¹τ⁻¹2⁶3⁴5⁻⁵/67336617049 = 8.95968(20) × 10⁻⁶⁵ [MJ⋅JD²D⁻²K⁻¹] IAUJ
julia> planckreduced(IAUJ) # MJ⋅JD²⋅D⁻¹⋅rad⁻¹
𝘩²𝘤⋅mP⁻²GMJ⁻¹τ⁻²2⁻⁵3⋅5⁻¹⁰/67336617049 = 7.92084(17) × 10⁻⁸¹ [MJ⋅JD²D⁻¹] IAUJ
julia> lightspeed(IAUJ) # JD⋅D⁻¹
𝘤⋅2⋅3²5⁻⁴/259493 = 33.272661653300865 [JD⋅D⁻¹] IAUJ
julia> vacuumpermeability(IAUJ) # MJ⋅JD²⋅C⁻²
𝘩⋅𝘤⋅mP⁻²GMJ⁻¹2⁻¹²3⁻¹5⁻¹³/259493 = 8.50430(19) × 10⁻⁴⁶ [MJ⋅JD⋅C⁻²] IAUJ
julia> electronmass(IAUJ) # MJ
𝘩²R∞⋅α⁻²mP⁻²GMJ⁻¹τ⁻¹2 = 4.79915(11) × 10⁻⁵⁸ [MJ] IAUJ
julia> molarmass(IAUJ) # MJ⋅mol⁻¹
𝘩⋅𝘤⋅mP⁻²GMJ⁻¹τ⁻¹2⁻³5⁻³ = 5.26836(12) × 10⁻³¹ [MJ⋅mol⁻¹] IAUJ
julia> luminousefficacy(IAUJ) # lm⋅D³⋅MJ⁻¹⋅JD⁻²
𝘩⁻¹𝘤⁻¹Kcd⋅mP²GMJ⋅τ⋅2⁻⁹3⁻⁷5⁶⋅67336617049 = 1.218177(27) × 10³⁹ [MJ⁻¹JD⁻²D³lm] IAUJ
julia> sqrt(gravitation(IAUJ)*solarmass(IAUJ)/jupiterdistance(IAUJ)^3) # D⁻¹
au³ᐟ²kG⋅τ⋅2⁻¹⁶3⁻¹¹ᐟ²5⁻¹²/1.3218691602384917×10⁸ = 0.001449102839405(44) [D⁻¹] IAUJMeasureSystems.Hubble — ConstantHubble = AstronomicalSystem(Metric,th,𝘤*th,mₑ)
F=T⁻¹, M=𝟙, L=T, T, Q, Θ=𝟙, N=𝟙, J=T⁻¹, A=𝟙, R=𝟙, C=𝟙Hubble UnitSystem defined by hubble parameter.
julia> boltzmann(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> planckreduced(Hubble)
𝘤⁻¹R∞⁻¹α²H0⋅au⁻¹2⁻¹¹3⁻⁴5⁻⁶ = 2.824(18) × 10⁻³⁹ [T] Hubble
julia> lightspeed(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> vacuumpermeability(Hubble)
τ⋅2 = 12.566370614359172 [TQ⁻²] Hubble
julia> electronmass(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> molarmass(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> luminousefficacy(Hubble)
𝟏 = 1.0 [𝟙] Hubble
julia> hubble(Hubble)
𝟏 = 1.0 [T⁻¹] Hubble
julia> cosmological(Hubble)
ΩΛ⋅3 = 2.067(17) [T⁻²] HubbleMeasureSystems.Cosmological — ConstantCosmological = AstronomicalSystem(Metric,lc/𝘤,lc,mc)
F=MT⁻¹, M, L=T, T, Q, Θ=M, N=M, J, A=𝟙, R=𝟙, C=𝟙Cosmological scale UnitSystem defined by darkenergydensity.
julia> boltzmann(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> planckreduced(Cosmological)
𝘩²𝘤⁻⁴ΩΛ⋅H0²au⁻²mP⁻²2⁻²⁰3⁻⁷5⁻¹² = 2.888(43) × 10⁻¹²² [MT] Cosmological
julia> lightspeed(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> vacuumpermeability(Cosmological)
τ⋅2 = 12.566370614359172 [MTQ⁻²] Cosmological
julia> electronmass(Cosmological)
𝘩²𝘤⁻³R∞⋅α⁻²ΩΛ¹ᐟ²H0⋅au⁻¹mP⁻²τ¹ᐟ²2⁻⁸3⁻⁷ᐟ²5⁻⁶ = 3.566(26) × 10⁻⁸³ [M] Cosmological
julia> molarmass(Cosmological)
𝟏 = 1.0 [𝟙] Cosmological
julia> luminousefficacy(Cosmological)
𝟏 = 1.0 [M⁻¹TJ] Cosmological
julia> hubble(Cosmological)
ΩΛ⁻¹ᐟ²τ¹ᐟ²2⋅3⁻¹ᐟ² = 3.487(14) [T⁻¹] Cosmological
julia> cosmological(Cosmological)
τ⋅2² = 25.132741228718345 [T⁻²] CosmologicalMeasureSystems.CosmologicalQuantum — ConstantCosmologicalQuantum = AstronomicalSystem(Metric,tcq,lcq,mcq)
F=M², M, L=M⁻¹, T=M⁻¹, Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙Cosmological quantum scale UnitSystem defined by darkenergydensity.
julia> boltzmann(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> planckreduced(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> lightspeed(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> vacuumpermeability(CosmologicalQuantum)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁼²] CosmologicalQuantum
julia> electronmass(CosmologicalQuantum)
𝘩¹ᐟ²R∞⋅α⁻²ΩΛ⁻¹ᐟ⁴H0⁻¹ᐟ²au¹ᐟ²mP⁻¹ᐟ²τ¹ᐟ⁴2¹³ᐟ²3⁷ᐟ⁴5³ = 2.2733(84) × 10⁸ [M] CosmologicalQuantum
julia> molarmass(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantum
julia> luminousefficacy(CosmologicalQuantum)
𝟏 = 1.0 [𝟙] CosmologicalQuantumNatural Unit Systems
With the introduction of the planckmass a set of natural atomic unit systems can be derived in terms of the gravitational coupling constant.
julia> αG # (mₑ/mP)^2
𝘩²𝘤⁻²mP⁻²R∞²α⁻⁴2² = 1.75181e-45 ± 3.9e-50Some of the notable variants include
Planck ::UnitSystem{1,1,1,1,√(4π*αG)}
PlanckGauss ::UnitSystem{1,1,1,4π,√αG}
Stoney ::UnitSystem{1,αinv,1,4π,√(αG*αinv)}
Hartree ::UnitSystem{1,1,αinv,4π/αinv^2,1}
Rydberg ::UnitSystem{1,1,2αinv,π/αinv^2,1/2}
Schrodinger ::UnitSystem{1,1,αinv,4π/αinv^2,√(αG*αinv)}
Electronic ::UnitSystem{1,αinv,1,4π,1}
Natural ::UnitSystem{1,1,1,1,1}
NaturalGauss ::UnitSystem{1,1,1,4π,1}
QCD ::UnitSystem{1,1,1,1,1/μₚₑ}
QCDGauss ::UnitSystem{1,1,1,4π,1/μₚₑ}
QCDoriginal ::UnitSystem{1,1,1,4π/αinv,1/μₚₑ}MeasureSystems.Planck — ConstantPlanck = UnitSystem(𝟏,𝟏,𝟏,𝟏,√(𝟐*τ*αG))
F=M², M, L=M⁻¹, T=M⁻¹, Q=𝟙, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙Planck UnitSystem with the electronmass value √(4π*αG) using gravitational coupling.
julia> boltzmann(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> planckreduced(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> lightspeed(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> vacuumpermeability(Planck)
𝟏 = 1.0 [𝟙] Planck
julia> electronmass(Planck)
𝘩⋅𝘤⁻¹R∞⋅α⁻²mP⁻¹τ¹ᐟ²2³ᐟ² = 1.483708(16) × 10⁻²² [M] PlanckMeasureSystems.PlanckGauss — ConstantPlanckGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,√αG)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙Planck (Gauss) UnitSystem with permeability of 4π and electronmass coupling √αG.
julia> boltzmann(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> planckreduced(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> lightspeed(PlanckGauss)
𝟏 = 1.0 [𝟙] PlanckGauss
julia> vacuumpermeability(PlanckGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] PlanckGauss
julia> electronmass(PlanckGauss)
𝘩⋅𝘤⁻¹R∞⋅α⁻²mP⁻¹2 = 4.185463(46) × 10⁻²³ [mP] PlanckGaussThe well known PlanckGauss values for length, time, mass, and temperature are:
julia> length(PlanckGauss,SI2019) # ℓP
𝘩⋅𝘤⁻¹mP⁻¹τ⁻¹ = 1.616255(18) × 10⁻³⁵ [m]/[mP⁻¹] PlanckGauss -> SI2019
julia> time(PlanckGauss,SI2019) # tP
𝘩⋅𝘤⁻²mP⁻¹τ⁻¹ = 5.391247(59) × 10⁻⁴⁴ [s]/[mP⁻¹] PlanckGauss -> SI2019
julia> mass(PlanckGauss,SI2019) # mP
mP = 2.176434(24) × 10⁻⁸ [kg]/[mP] PlanckGauss -> SI2019
julia> temperature(PlanckGauss,SI2019) # TP
kB⁻¹𝘤²mP = 1.416784(16) × 10³² [K]/[mP] PlanckGauss -> SI2019MeasureSystems.Stoney — ConstantStoney = UnitSystem(𝟏,𝟏/α,𝟏,𝟐*τ,√(αG/α))
F=MT⁻¹, M, L=T, T, Q, Θ=M, N=M, J, A=𝟙, R=𝟙, C=𝟙Stoney UnitSystem with permeability of 4π and electronmass coupling √(αG/α).
julia> boltzmann(Stoney)
𝟏 = 1.0 [𝟙] Stoney
julia> planckreduced(Stoney)
α⁻¹ = 137.035999084(21) [MT] Stoney
julia> lightspeed(Stoney)
𝟏 = 1.0 [𝟙] Stoney
julia> vacuumpermeability(Stoney)
τ⋅2 = 12.566370614359172 [MTQ⁻²] Stoney
julia> electronmass(Stoney)
𝘩⋅𝘤⁻¹R∞⋅α⁻⁵ᐟ²mP⁻¹2 = 4.899602(54) × 10⁻²² [M] StoneyThe well known Stoney values for length, time, mass, and charge are:
julia> length(Stoney,SI2019) # lS
𝘩⋅𝘤⁻¹α¹ᐟ²mP⁻¹τ⁻¹ = 1.380679(15) × 10⁻³⁶ [m]/[T] Stoney -> SI2019
julia> time(Stoney,SI2019) # tS
𝘩⋅𝘤⁻²α¹ᐟ²mP⁻¹τ⁻¹ = 4.605448(51) × 10⁻⁴⁵ [s]/[T] Stoney -> SI2019
julia> mass(Stoney,SI2019) # mS
α¹ᐟ²mP = 1.859209(21) × 10⁻⁹ [kg]/[M] Stoney -> SI2019
julia> charge(Stoney,SI2019) # qS
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] Stoney -> SI2019MeasureSystems.Hartree — ConstantHartree = UnitSystem(𝟏,𝟏,𝟏/α,𝟐*τ*α^2,𝟏)
F=L⁻³, M=𝟙, L=L, T=L², Q=Q, Θ=L⁻², N=𝟙, J=L⁻⁴, A=𝟙, R=𝟙, C=𝟙Hartree atomic UnitSystem based on bohr radius and elementarycharge scale.
julia> boltzmann(Hartree)
𝟏 = 1.0 [𝟙] Hartree
julia> planckreduced(Hartree)
𝟏 = 1.0 [𝟙] Hartree
julia> lightspeed(Hartree)
α⁻¹ = 137.035999084(21) [a₀⁻¹] Hartree
julia> vacuumpermeability(Hartree)
α²τ⋅2 = 0.00066917625662(21) [a₀⋅𝘦⁻²] Hartree
julia> electronmass(Hartree)
𝟏 = 1.0 [𝟙] HartreeThe well known Hartree atomic unit values for length, time, mass, and charge are:
julia> length(Hartree,SI2019) # lA
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m]/[a₀] Hartree -> SI2019
julia> time(Hartree,SI2019) # tA
𝘤⁻¹R∞⁻¹τ⁻¹2⁻¹ = 2.4188843265857(46) × 10⁻¹⁷ [s]/[a₀²] Hartree -> SI2019
julia> mass(Hartree,SI2019) # mA
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg]/[𝟙] Hartree -> SI2019
julia> charge(Hartree,SI2019) # qA
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] Hartree -> SI2019MeasureSystems.Rydberg — ConstantRydberg = UnitSystem(𝟏,𝟏,𝟐/α,τ/𝟐*α^2,𝟏/𝟐)
F=MLT⁻², M, L, T, Q, Θ=T⁻¹, N=M, J=T², A=𝟙, R=𝟙, C=𝟙Rydberg UnitSystem with lightspeed of 𝟐/α and permeability of π*α^2.
julia> boltzmann(Rydberg)
𝟏 = 1.0 [ML²T⁻¹] Rydberg
julia> planckreduced(Rydberg)
𝟏 = 1.0 [ML²T⁻¹] Rydberg
julia> lightspeed(Rydberg)
α⁻¹2 = 274.071998168(42) [LT⁻¹] Rydberg
julia> vacuumpermeability(Rydberg)
α²τ⋅2⁻¹ = 0.000167294064155(51) [MLQ⁻²] Rydberg
julia> electronmass(Rydberg)
2⁻¹ = 0.5 [M] RydbergThe well known Rydberg atomic unit values for length, time, mass, and charge are:
julia> length(Rydberg,SI2019) # lR
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m]/[a₀] Rydberg -> SI2019
julia> time(Rydberg,SI2019) # tR
𝘤⁻¹R∞⁻¹τ⁻¹ = 4.8377686531713(93) × 10⁻¹⁷ [s]/[T] Rydberg -> SI2019
julia> mass(Rydberg,SI2019) # mR
𝘩⋅𝘤⁻¹R∞⋅α⁻²2² = 1.82187674031(56) × 10⁻³⁰ [kg]/[M] Rydberg -> SI2019
julia> charge(Rydberg,SI2019) # qR
𝘦⋅2⁻¹ᐟ² = 1.1329099625600371×10⁻¹⁹ [C]/[Q] Rydberg -> SI2019MeasureSystems.Schrodinger — ConstantSchrodinger = UnitSystem(𝟏,𝟏,𝟏/α,𝟐*τ*α^2,√(αG/α))
F=MLT⁻², M, L, T, Q, Θ=T⁻¹, N=M, J=T², A=𝟙, R=𝟙, C=𝟙Schrodinger UnitSystem with permeability of 4π/αinv^2 and electronmass of √(αG*αinv).
julia> boltzmann(Schrodinger)
𝟏 = 1.0 [ML²T⁻¹] Schrodinger
julia> planckreduced(Schrodinger)
𝟏 = 1.0 [ML²T⁻¹] Schrodinger
julia> lightspeed(Schrodinger)
α⁻¹ = 137.035999084(21) [LT⁻¹] Schrodinger
julia> vacuumpermeability(Schrodinger)
α²τ⋅2 = 0.00066917625662(21) [MLQ⁻²] Schrodinger
julia> electronmass(Schrodinger)
𝘩⋅𝘤⁻¹R∞⋅α⁻⁵ᐟ²mP⁻¹2 = 4.899602(54) × 10⁻²² [M] SchrodingerMeasureSystems.Electronic — ConstantElectronic = UnitSystem(𝟏,𝟏/α,𝟏,𝟐*τ,𝟏)
F=T⁻¹, M=𝟙, L=T, T, Q, Θ=𝟙, N=𝟙, J=T⁻¹, A=𝟙, R=𝟙, C=𝟙Electronic UnitSystem with planckreduced of 1/α and permeability of 4π.
julia> boltzmann(Electronic)
𝟏 = 1.0 [𝟙] Electronic
julia> planckreduced(Electronic)
α⁻¹ = 137.035999084(21) [T] Electronic
julia> lightspeed(Electronic)
𝟏 = 1.0 [𝟙] Electronic
julia> vacuumpermeability(Electronic)
τ⋅2 = 12.566370614359172 [TQ⁻²] Electronic
julia> electronmass(Electronic)
𝟏 = 1.0 [𝟙] ElectronicMeasureSystems.Natural — ConstantNatural = UnitSystem(𝟏,𝟏,𝟏,𝟏,𝟏)
F=𝟙, M=𝟙, L=𝟙, T=𝟙, Q=𝟙, Θ=𝟙, N=𝟙, J=𝟙, A=𝟙, R=𝟙, C=𝟙Natural UnitSystem with all primary constants having unit value.
julia> boltzmann(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> planckreduced(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> lightspeed(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> vacuumpermeability(Natural)
𝟏 = 1.0 [𝟙] Natural
julia> electronmass(Natural)
𝟏 = 1.0 [𝟙] NaturalThe well known Natural values for length, time, mass, and charge are:
julia> length(Natural,SI2019)
R∞⁻¹α²τ⁻¹2⁻¹ = 3.8615926796(12) × 10⁻¹³ [m]/[𝟙] Natural -> SI2019
julia> time(Natural,SI2019)
𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻¹ = 1.28808866819(39) × 10⁻²¹ [s]/[𝟙] Natural -> SI2019
julia> mass(Natural,SI2019)
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg]/[𝟙] Natural -> SI2019
julia> charge(Natural,SI2019)
𝘦⋅α⁻¹ᐟ²τ⁻¹ᐟ²2⁻¹ᐟ² = 5.29081768990(41) × 10⁻¹⁹ [C]/[𝟙] Natural -> SI2019MeasureSystems.NaturalGauss — ConstantNaturalGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,𝟏)
F=𝟙, M=𝟙, L=𝟙, T=𝟙, Q=Q, Θ=𝟙, N=𝟙, J=𝟙, A=𝟙, R=𝟙, C=𝟙Natural (Gauss) UnitSystem with the Gaussian permeability value of 4π.
julia> boltzmann(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> planckreduced(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> lightspeed(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGauss
julia> vacuumpermeability(NaturalGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] NaturalGauss
julia> electronmass(NaturalGauss)
𝟏 = 1.0 [𝟙] NaturalGaussMeasureSystems.QCD — ConstantQCD = UnitSystem(𝟏,𝟏,𝟏,𝟏,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=𝟙, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙Qunatum chromodynamics UnitSystem based on the protonmass scale.
julia> boltzmann(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> planckreduced(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> lightspeed(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> vacuumpermeability(QCD)
𝟏 = 1.0 [𝟙] QCD
julia> electronmass(QCD)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCDThe well known QCD values for length, time, mass, and charge are:
julia> length(QCD,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCD -> SI2019
julia> time(QCD,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCD -> SI2019
julia> mass(QCD,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCD -> SI2019
julia> charge(QCD,SI2019) # qQCD
𝘦⋅α⁻¹ᐟ²τ⁻¹ᐟ²2⁻¹ᐟ² = 5.29081768990(41) × 10⁻¹⁹ [C]/[𝟙] QCD -> SI2019MeasureSystems.QCDGauss — ConstantQCDGauss = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙Qunatum chromodynamics (Gauss) UnitSystem based on the protonmass scale.
julia> boltzmann(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> planckreduced(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> lightspeed(QCDGauss)
𝟏 = 1.0 [𝟙] QCDGauss
julia> vacuumpermeability(QCDGauss)
τ⋅2 = 12.566370614359172 [𝘦ₙ⁻²] QCDGauss
julia> electronmass(QCDGauss)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCDGaussThe well known QCDGauss values for length, time, mass, and charge are:
julia> length(QCDGauss,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCDGauss -> SI2019
julia> time(QCDGauss,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCDGauss -> SI2019
julia> mass(QCDGauss,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCDGauss -> SI2019
julia> charge(QCDGauss,SI2019) # qQCD
𝘦⋅α⁻¹ᐟ² = 1.87554603778(14) × 10⁻¹⁸ [C]/[𝘦ₙ] QCDGauss -> SI2019MeasureSystems.QCDoriginal — ConstantQCDoriginal = UnitSystem(𝟏,𝟏,𝟏,𝟐*τ*α,𝟏/μₚₑ)
F=M², M=M, L=M⁻¹, T=M⁻¹, Q=Q, Θ=M, N=M, J=M², A=𝟙, R=𝟙, C=𝟙Qunatum chromodynamics (original) UnitSystem scaled by protonmass and elementarycharge.
julia> boltzmann(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> planckreduced(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> lightspeed(QCDoriginal)
𝟏 = 1.0 [𝟙] QCDoriginal
julia> vacuumpermeability(QCDoriginal)
α⋅τ⋅2 = 0.091701236889(14) [𝘦⁻²] QCDoriginal
julia> electronmass(QCDoriginal)
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCDoriginalThe well known QCDoriginal values for length, time, mass, and charge are:
julia> length(QCDoriginal,SI2019) # lQCD
R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 2.10308910335(66) × 10⁻¹⁶ [m]/[mₚ⁻¹] QCDoriginal -> SI2019
julia> time(QCDoriginal,SI2019) # tQCD
𝘤⁻¹R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹τ⁻¹2⁻¹ = 7.0151501388(22) × 10⁻²⁵ [s]/[mₚ⁻¹] QCDoriginal -> SI2019
julia> mass(QCDoriginal,SI2019) # mQCD
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg]/[mₚ] QCDoriginal -> SI2019
julia> charge(QCDoriginal,SI2019) # qQCD
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] QCDoriginal -> SI2019UnitSystem Index
MeasureSystems.BritishMeasureSystems.CODATAMeasureSystems.ConventionalMeasureSystems.CosmologicalMeasureSystems.CosmologicalQuantumMeasureSystems.EMUMeasureSystems.ESUMeasureSystems.ElectronicMeasureSystems.EngineeringMeasureSystems.EnglishMeasureSystems.FFFMeasureSystems.FPSMeasureSystems.GaussMeasureSystems.GravitationalMeasureSystems.HartreeMeasureSystems.HubbleMeasureSystems.IAUMeasureSystems.IAUEMeasureSystems.IAUJMeasureSystems.IPSMeasureSystems.InternationalMeasureSystems.InternationalMeanMeasureSystems.KKHMeasureSystems.LorentzHeavisideMeasureSystems.MPHMeasureSystems.MTSMeasureSystems.MeridianMeasureSystems.MetricMeasureSystems.NaturalMeasureSystems.NaturalGaussMeasureSystems.NauticalMeasureSystems.PlanckMeasureSystems.PlanckGaussMeasureSystems.QCDMeasureSystems.QCDGaussMeasureSystems.QCDoriginalMeasureSystems.RydbergMeasureSystems.SI1976MeasureSystems.SI2019MeasureSystems.SchrodingerMeasureSystems.StoneyMeasureSystems.Survey