Unit Conversions

Standardized conversion factors for physics units between UnitSystem specifications: DOI

Kinematic Units

MeasureSystems.AConstant
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
angle(U::UnitSystem,S::UnitSystem) = angle(U,S)
angle(v::Real,U::UnitSystem,S::UnitSystem) = v/angle(U,S)
A [ϕ] Unified

Extent of one-dimensional angle or angle (rad), unit conversion factor.

julia> angle(CGS,Metric) # rad⋅rad⁻¹
𝟏 = 1.0 [𝟙]/[𝟙] Metric -> Gauss
MeasureSystems.solidangleConstant
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
solidangle(U::UnitSystem,S::UnitSystem) = angle(U,S)^2
solidangle(v::Real,U::UnitSystem,S::UnitSystem) = v/solidangle(U,S)
A² [ϕ²] Unified

Extent of two-dimensional angle or solidangle (rad²), unit conversion factor.

julia> solidangle(CGS,Metric) # rad²⋅rad⁻²
𝟏 = 1.0 [𝟙]/[𝟙] Gauss -> Metric
MeasureSystems.TConstant
time : [T], [T], [T], [T], [T]
time(U::UnitSystem,S::UnitSystem) = length(U,S)/speed(U,S)
time(v::Real,U::UnitSystem,S::UnitSystem) = v/time(U,S)
T [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified

Dimension along which events are ordered or T (s), unit conversion factor.

julia> T(MPH,Metric) # s⋅h⁻¹
2⁴3²5² = 3600.0 [s]/[h] MPH -> Metric

julia> T(IAU,Metric) # s⋅D⁻¹
2⁷3³5² = 86400.0 [s]/[D] IAU☉ -> Metric

julia> T(Hubble,Metric)
H0⁻¹au⋅τ⁻¹2¹⁰3⁴5⁶ = 4.561(28) × 10¹⁷ [s]/[T] Hubble -> Metric
MeasureSystems.angulartimeConstant
angulartime : [TA⁻¹], [T], [T], [T], [T]
angulartime(U::UnitSystem,S::UnitSystem) = time(U,S)/angle(U,S)
angulartime(v::Real,U::UnitSystem,S::UnitSystem) = v/angulartime(U,S)
TA⁻¹ [ħ⋅𝘤⁻²mₑ⁻¹g₀] Unified

Circular time per angle (s⋅rad⁻¹), unit conversion factor.

julia> angulartime(IAU,Metric) s⋅day⁻¹
2⁷3³5² = 86400.0 [s]/[D] IAU☉ -> Metric
MeasureSystems.LConstant
length : [L], [L], [L], [L], [L]
length(U::UnitSystem,S::UnitSystem) = planck(U,S)/mass(U,S)/speed(U,S)
length(v::Real,U::UnitSystem,S::UnitSystem) = v/length(U,S)
L [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Extent of one-dimensional shape or length (m), unit conversion factor.

julia> L(CGS,Metric) # m⋅cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> L(IAU,Metric) # m⋅au⁻¹
au = 1.495978707000(30) × 10¹¹ [m]/[au] IAU☉ -> Metric

julia> L(English,Metric) # m⋅ft⁻¹
ft = 0.3048 [m]/[ft] English -> Metric

julia> L(EnglishUS,English) # ft⋅ftUS⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English

julia> L(PlanckGauss,Metric) # m⋅ℓP⁻¹
𝘩⋅𝘤⁻¹mP⁻¹τ⁻¹ = 1.616255(18) × 10⁻³⁵ [m]/[mP⁻¹] PlanckGauss -> Metric
MeasureSystems.angularlengthConstant
angularlength : [LA⁻¹], [L], [L], [L], [L]
angularlength(U::UnitSystem,S::UnitSystem) = length(U,S)/angle(U,S)
angularlength(v::Real,U::UnitSystem,S::UnitSystem) = v/angularlength(U,S)
LA⁻¹ [ħ⋅𝘤⁻¹mₑ⁻¹g₀] Unified

Unit of length per angle (m⋅rad⁻¹), unit conversion factor.

julia> angularlength(CGS,Metric) # cm⋅m⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> angularlength(English,Metric) # ft⋅m⁻¹
ft = 0.3048 [m]/[ft] English -> Metric
MeasureSystems.areaConstant
area : [L²], [L²], [L²], [L²], [L²]
area(U::UnitSystem,S::UnitSystem) = length(U,S)^2
area(v::Real,U::UnitSystem,S::UnitSystem) = v/area(U,S)
L² [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified

Extent of two-dimensional shape or area (m²), unit conversion factor.

julia> area(CGS,Metric) # m²⋅cm⁻²
2⁻⁴5⁻⁴ = 0.0001 [m²]/[cm²] Gauss -> Metric

julia> area(English,Metric) # m²⋅ft⁻²
ft² = 0.09290304 [m²]/[ft²] English -> Metric

julia> area(Survey,English) # ft²⋅ftUS⁻²
ft⁻²ftUS² = 1.0000040000119996 [ft²]/[ft²] Survey -> English
MeasureSystems.volumeConstant
volume : [L³], [L³], [L³], [L³], [L³]
volume(U::UnitSystem,S::UnitSystem) = length(U,S)^3
volume(v::Real,U::UnitSystem,S::UnitSystem) = v/volume(U,S)
L³ [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

Extent of three-dimensional shape or volume (m³), unit conversion factor.

julia> volume(CGS,Metric) # m³⋅cm⁻³
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [m³]/[mL] Gauss -> Metric

julia> volume(English,Metric) # m³⋅ft⁻³
ft³ = 0.028316846592000004 [m³]/[ft³] English -> Metric

julia> volume(Survey,English) # ft³⋅ftUS⁻³
ft⁻³ftUS³ = 1.0000060000239996 [ft³]/[ft³] Survey -> English
MeasureSystems.wavenumberConstant
wavenumber : [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
wavenumber(U::UnitSystem,S::UnitSystem) = 1/length(U,S)
wavenumber(v::Real,U::UnitSystem,S::UnitSystem) = v/wavenumber(U,S)
L⁻¹ [ħ⁻¹𝘤⋅mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Number of occurences per unit of space (m⁻¹), unit conversion factor.

julia> wavenumber(CGS,Metric) # cm⋅m⁻¹
2²5² = 100.0 [m⁻¹]/[cm⁻¹] Gauss -> Metric

julia> wavenumber(English,Metric) # ft⋅m⁻¹
ft⁻¹ = 3.280839895013123 [m⁻¹]/[ft⁻¹] English -> Metric
MeasureSystems.angularwavenumberConstant
angularwavenumber : [L⁻¹A], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
angularwavenumber(U::UnitSystem,S::UnitSystem) = angle(U,S)/length(U,S)
angularwavenumber(v::Real,U::UnitSystem,S::UnitSystem) = v/angularwavenumber(U,S)
L⁻¹A [ħ⁻¹𝘤⋅mₑ⋅g₀⁻¹] Unified

Number of occurences per unit of space (m⁻¹), unit conversion factor.

julia> angularwavenumber(CGS,Metric) # cm⋅m⁻¹
2²5² = 100.0 [m⁻¹]/[cm⁻¹] Gauss -> Metric

julia> angularwavenumber(English,Metric) # ft⋅m⁻¹
ft⁻¹ = 3.280839895013123 [m⁻¹]/[ft⁻¹] English -> Metric
MeasureSystems.fuelefficiencyConstant
fuelefficiency : [L⁻²], [L⁻²], [L⁻²], [L⁻²], [L⁻²]
fuelefficiency(U::UnitSystem,S::UnitSystem) = 1/area(U,S)
fuelefficiency(v::Real,U::UnitSystem,S::UnitSystem) = v/fuelefficiency(U,S)
L⁻² [ħ⁻²𝘤²mₑ²ϕ⁻²g₀⁻²] Unified

Distance per volume or fuel efficiency (m⋅m⁻³, m⁻²), unit conversion factor.

julia> fuelefficiency(CGS,Metric) # cm²⋅m⁻²
2⁴5⁴ = 10000.0 [m⁻²]/[cm⁻²] Gauss -> Metric

julia> fuelefficiency(English,Metric) # ft²⋅m⁻²
ft⁻² = 10.76391041670972 [m⁻²]/[ft⁻²] English -> Metric
MeasureSystems.frequencyConstant
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
frequency(U::UnitSystem,S::UnitSystem) = 1/time(U,S)
frequency(v::Real,U::UnitSystem,S::UnitSystem) = v/frequency(U,S)
T⁻¹ [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Number of occurences per unit of time (Hz or s⁻¹), unit conversion factor.

julia> frequency(IAU,Metric) day⋅s⁻¹
2⁻⁷3⁻³5⁻² = 1.1574074074074079×10⁻⁵ [Hz]/[D⁻¹] IAU☉ -> Metric
MeasureSystems.angularfrequencyConstant
angularfrequency : [T⁻¹A], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
angularfrequency(U::UnitSystem,S::UnitSystem) = angle(U,S)/time(U,S)
angularfrequency(v::Real,U::UnitSystem,S::UnitSystem) = v/angularfrequency(U,S)
T⁻¹A [ħ⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

Circular radian frequency (rad⋅Hz or rad⋅s⁻¹), unit conversion factor.

julia> angularfrequency(IAU,Metric) day⋅s⁻¹
2⁻⁷3⁻³5⁻² = 1.1574074074074079×10⁻⁵ [Hz]/[D⁻¹] IAU☉ -> Metric
MeasureSystems.frequencydriftConstant
frequencydrift : [T⁻²], [T⁻²], [T⁻²], [T⁻²], [T⁻²]
frequencydrift(U::UnitSystem,S::UnitSystem) = 1/time(U,S)^2
frequencydrift(v::Real,U::UnitSystem,S::UnitSystem) = v/frequencydrift(U,S)
T⁻² [ħ⁻²𝘤⁴mₑ²ϕ⁻²g₀⁻²] Unified

Drift of frequency per time or frequencydrift (Hz⋅s⁻¹, s⁻²), unit conversion factor.

julia> frequencydrift(IAU,Metric) day²⋅Hz⋅s⁻¹
2⁻¹⁴3⁻⁶5⁻⁴ = 1.3395919067215366×10⁻¹⁰ [Hz⋅s⁻¹]/[D⁻²] IAU☉ -> Metric
MeasureSystems.stagnanceConstant
stagnance : [L⁻¹T], [L⁻¹T], [L⁻¹T], [L⁻¹T], [L⁻¹T]
stagnance(U::UnitSystem,S::UnitSystem) = lightspeed(U)/lightspeed(S)
stagnance(v::Real,U::UnitSystem,S::UnitSystem) = v/stagnance(U,S)
L⁻¹T [𝘤⁻¹] Unified

Stagnance or time per length (s⋅m⁻¹), unit conversion factor.

julia> stagnance(CGS,Metric) # cm⋅m⁻¹
2²5² = 100.0 [m⁻¹]/[cm⁻¹] Gauss -> Metric

julia> stagnance(IAU,Metric) # au⋅s⋅day⁻¹⋅m⁻¹
au⁻¹2⁷3³5² = 5.77548327364(12) × 10⁻⁷ [m⁻¹s]/[au⁻¹D] IAU☉ -> Metric

julia> stagnance(English,Metric) # ft⋅m⁻¹
ft⁻¹ = 3.280839895013123 [m⁻¹]/[ft⁻¹] English -> Metric

julia> stagnance(Survey,English) # ftUS⋅ft⁻¹
ft⋅ftUS⁻¹ = 0.9999980000000002 [ft⁻¹]/[ft⁻¹] Survey -> English
MeasureSystems.speedConstant
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
speed(U::UnitSystem,S::UnitSystem) = lightspeed(S)/lightspeed(U)
speed(v::Real,U::UnitSystem,S::UnitSystem) = v/speed(U,S)
LT⁻¹ [𝘤] Unified

Velocity or length per time or speed (m⋅s⁻¹), unit conversion factor.

julia> speed(CGS,Metric) # m⋅cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> speed(IAU,Metric) # m⋅day⋅s⁻¹⋅au⁻¹
au⋅2⁻⁷3⁻³5⁻² = 1.731456836806(35) × 10⁶ [m⋅s⁻¹]/[au⋅D⁻¹] IAU☉ -> Metric

julia> speed(English,Metric) # m⋅ft⁻¹
ft = 0.3048 [m]/[ft] English -> Metric

julia> speed(Survey,English) # ft⋅ftUS⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.accelerationConstant
acceleration : [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
acceleration(U::UnitSystem,S::UnitSystem) = speed(U,S)/time(U,S)
acceleration(v::Real,U::UnitSystem,S::UnitSystem) = v/acceleration(U,S)
LT⁻² [ħ⁻¹𝘤³mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Specific force or speed per time or acceleration (m⋅s⁻²), unit conversion factor.

julia> acceleration(CGS,Metric) # m⋅s⁻¹⋅gal⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> acceleration(IAU,Metric) # m⋅day²⋅s⁻²⋅au⁻¹
au⋅2⁻¹⁴3⁻⁶5⁻⁴ = 20.0400096852500(40) [m⋅s⁻²]/[au⋅D⁻²] IAU☉ -> Metric

julia> acceleration(English,Metric) # m⋅ft⁻¹
ft = 0.3048 [m]/[ft] English -> Metric

julia> acceleration(Survey,English) # ft⋅ftUS⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.jerkConstant
jerk : [LT⁻³], [LT⁻³], [LT⁻³], [LT⁻³], [LT⁻³]
jerk(U::UnitSystem,S::UnitSystem) = speed(U,S)/time(U,S)^2
jerk(v::Real,U::UnitSystem,S::UnitSystem) = v/jerk(U,S)
LT⁻³ [ħ⁻²𝘤⁵mₑ²ϕ⁻²g₀⁻²] Unified

Jolt or acceleration per time or jerk (m⋅s⁻³), unit conversion factor.

julia> jerk(CGS,Metric) # m⋅cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> jerk(IAU,Metric) # m⋅day³⋅s⁻³⋅au⁻¹
au⋅2⁻²¹3⁻⁹5⁻⁶ = 0.0002319445565422(47) [m⋅s⁻³]/[au⋅D⁻³] IAU☉ -> Metric

julia> jerk(English,Metric) # m⋅ft⁻¹
ft = 0.3048 [m]/[ft] English -> Metric

julia> jerk(Survey,English) # ft⋅ftUS⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.snapConstant
snap : [LT⁻⁴], [LT⁻⁴], [LT⁻⁴], [LT⁻⁴], [LT⁻⁴]
snap(U::UnitSystem,S::UnitSystem) = speed(U,S)/time(U,S)^3
snap(v::Real,U::UnitSystem,S::UnitSystem) = v/snap(U,S)
LT⁻⁴ [ħ⁻³𝘤⁷mₑ³ϕ⁻³g₀⁻³] Unified

Jounce or jerk per time or snap (m⋅s⁻⁴), unit conversion factor.

julia> snap(CGS,Metric) # m⋅cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> snap(IAU,Metric) # m⋅day⁴⋅s⁻⁴⋅au⁻¹
au⋅2⁻²⁸3⁻¹²5⁻⁸ = 2.684543478498(54) × 10⁻⁹ [m⋅s⁻⁴]/[au⋅D⁻⁴] IAU☉ -> Metric

julia> snap(English,Metric) # m⋅ft⁻¹
ft = 0.3048 [m]/[ft] English -> Metric

julia> snap(Survey,English) # ft⋅ftUS⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.crackleConstant
crackle : [LT⁻⁵], [LT⁻⁵], [LT⁻⁵], [LT⁻⁵], [LT⁻⁵]
crackle(U::UnitSystem,S::UnitSystem) = speed(U,S)/time(U,S)^4
crackle(v::Real,U::UnitSystem,S::UnitSystem) = v/crackle(U,S)
LT⁻⁵ [ħ⁻⁴𝘤⁹mₑ⁴ϕ⁻⁴g₀⁻⁴] Unified

A snap per time or crackle (m⋅s⁻⁵), unit conversion factor.

julia> crackle(CGS,Metric) # m⋅cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> crackle(IAU,Metric) # m⋅day⁵⋅s⁻⁵⋅au⁻¹
au⋅2⁻³⁵3⁻¹⁵5⁻¹⁰ = 3.107110507521(62) × 10⁻¹⁴ [m⋅s⁻⁵]/[au⋅D⁻⁵] IAU☉ -> Metric

julia> crackle(English,Metric) # m⋅ft⁻¹
ft = 0.3048 [m]/[ft] English -> Metric

julia> crackle(Survey,English) # ft⋅ftUS⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.popConstant
pop : [LT⁻⁶], [LT⁻⁶], [LT⁻⁶], [LT⁻⁶], [LT⁻⁶]
pop(U::UnitSystem,S::UnitSystem) = speed(U,S)/time(U,S)^5
pop(v::Real,U::UnitSystem,S::UnitSystem) = v/pop(U,S)
LT⁻⁶ [ħ⁻⁵𝘤¹¹mₑ⁵ϕ⁻⁵g₀⁻⁵] Unified

A crackle per time or pop (m⋅s⁻⁶), unit conversion factor.

julia> pop(CGS,Metric) # m⋅cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [m]/[cm] Gauss -> Metric

julia> pop(IAU,Metric) # m⋅day⁶⋅s⁻⁶⋅au⁻¹
au⋅2⁻⁴²3⁻¹⁸5⁻¹² = 3.596192717038(72) × 10⁻¹⁹ [m⋅s⁻⁶]/[au⋅D⁻⁶] IAU☉ -> Metric

julia> pop(English,Metric) # m⋅ft⁻¹
ft = 0.3048 [m]/[ft] English -> Metric

julia> pop(Survey,English) # ft⋅ftUS⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.volumeflowConstant
volumeflow : [L³T⁻¹], [L³T⁻¹], [L³T⁻¹], [L³T⁻¹], [L³T⁻¹]
volumeflow(U::UnitSystem,S::UnitSystem) = area(U,S)*speed(U,S)
volumeflow(v::Real,U::UnitSystem,S::UnitSystem) = v/volumeflow(U,S)
L³T⁻¹ [ħ²𝘤⁻¹mₑ⁻²ϕ²g₀²] Unified

Volumetric flow rate or volumeflow (m³⋅s⁻¹), unit conversion factor.

julia> volumeflow(CGS,Metric) # m³⋅cm⁻³
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [m³]/[mL] Gauss -> Metric

julia> volumeflow(English,Metric) # m³⋅ft⁻³
ft³ = 0.028316846592000004 [m³]/[ft³] English -> Metric

julia> volumeflow(Survey,English) # ft³⋅ftUS⁻³
ft⁻³ftUS³ = 1.0000060000239996 [ft³]/[ft³] Survey -> English
MeasureSystems.etendueConstant
etendue : [L²A²], [L²], [L²], [L²], [L²]
etendue(U::UnitSystem,S::UnitSystem) = area(U,S)*solidangle(U,S)
etendue(v::Real,U::UnitSystem,S::UnitSystem) = v/etendue(U,S)
L²A² [ħ²𝘤⁻²mₑ⁻²ϕ⁴g₀²] Unified

Etendue or area times solidangle (m², ft²), unit conversion factor.

julia> etendue(CGS,Metric) # m²⋅cm⁻²
2⁻⁴5⁻⁴ = 0.0001 [m²]/[cm²] Gauss -> Metric

julia> etendue(English,Metric) # m²⋅ft⁻²
ft² = 0.09290304 [m²]/[ft²] English -> Metric
MeasureSystems.photonintensityConstant
photonintensity : [T⁻¹A⁻²], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
photonintensity(U::UnitSystem,S::UnitSystem) = frequency(U,S)/solidangle(U,S)
photonintensity(v::Real,U::UnitSystem,S::UnitSystem) = v/photonintensity(U,S)
T⁻¹A⁻² [ħ⁻¹𝘤²mₑ⋅ϕ⁻³g₀⁻¹] Unified

Photon intensity or frequency per area (Hz⋅m⁻², m⁻²⋅s⁻¹), unit conversion factor.

julia> photonintensity(IAU,Metric) day⋅s⁻¹
2⁻⁷3⁻³5⁻² = 1.1574074074074079×10⁻⁵ [Hz]/[D⁻¹] IAU☉ -> Metric
MeasureSystems.photonirradianceConstant
photonirradiance : [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T]
photonirradiance(U::UnitSystem,S::UnitSystem) = 1/area(U,S)/time(U,S)
photonirradiance(v::Real,U::UnitSystem,S::UnitSystem) = v/photonirradiance(U,S)
L⁻²T [ħ⁻¹mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Photon flux or frequency per area (Hz⋅m⁻², m⁻²⋅s⁻¹), unit conversion factor.

julia> photonirradiance(CGS,Metric) # cm²⋅m⁻²
2⁴5⁴ = 10000.0 [m⁻²]/[cm⁻²] Gauss -> Metric

julia> photonirradiance(English,Metric) # ft²⋅m⁻²
ft⁻² = 10.76391041670972 [m⁻²]/[ft⁻²] English -> Metric
MeasureSystems.photonradianceConstant
photonradiance : [L⁻²TA⁻²], [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T]
photonradiance(U::UnitSystem,S::UnitSystem) = photonirradiance(U,S)/solidangle(U,S)
photonradiance(v::Real,U::UnitSystem,S::UnitSystem) = v/photonradiance(U,S)
L⁻²TA⁻² [ħ⁻¹mₑ⋅ϕ⁻³g₀⁻¹] Unified

Photon radiance or photonirradiance per solidangle (Hz⋅m⁻², m⁻²⋅s⁻¹), unit conversion factor.

julia> photonradiance(CGS,Metric) # cm²⋅m⁻²
2⁴5⁴ = 10000.0 [m⁻²]/[cm⁻²] Gauss -> Metric

julia> photonradiance(English,Metric) # ft²⋅m⁻²
ft⁻² = 10.76391041670972 [m⁻²]/[ft⁻²] English -> Metric

Mechanical Units

MeasureSystems.inertiaConstant
inertia : [FL⁻¹T²], [FL⁻¹T²], [M], [M], [M]
inertia(U::UnitSystem,S::UnitSystem) = mass(U,S)/gravity(U,S)
inertia(v::Real,U::UnitSystem,S::UnitSystem) = v/inertia(U,S)
FL⁻¹T² [mₑ⋅g₀⁻¹] Unified

Inertal mass or matter quantity or resistance to aceleration (kg), unit conversion factor.

julia> inertia(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [N⋅m⁻¹]/[dyn⋅cm⁻¹] Gauss -> Metric

julia> inertia(CODATA,Metric) # kg⋅kg⁻¹
𝘩⋅RK⋅KJ²2⁻² = 1.000000017(12) [N]/[N] CODATA -> Metric

julia> inertia(Conventional,Metric) # kg⋅kg⁻¹
𝘩⋅RK90⋅KJ90²2⁻² = 1.000000195536555 [N]/[N] Conventional -> Metric

julia> inertia(English,Metric) # kg⋅slug⁻¹
g₀⋅ft⁻¹lb = 14.593902937206364 [N⋅m⁻¹]/[lbf⋅ft⁻¹] English -> Metric

julia> inertia(IAU,Metric) # kg⋅m⊙⁻¹
𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰ [kg]/[M☉] IAU☉ -> Metric

julia> inertia(PlanckGauss,Metric) # kg⋅mP⁻¹
mP = 2.176434(24) × 10⁻⁸ [kg]/[mP] PlanckGauss -> Metric
MeasureSystems.massConstant
mass : [M], [FL⁻¹T²], [M], [M], [M]
mass(U::UnitSystem,S::UnitSystem) = electronmass(S)/electronmass(U)
mass(v::Real,U::UnitSystem,S::UnitSystem) = v/mass(U,S)
M [mₑ] Unified

Inertal mass or matter quantity or resistance to aceleration (kg), unit conversion factor.

julia> mass(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [kg]/[g] Gauss -> Metric

julia> mass(CODATA,Metric) # kg⋅kg⁻¹
𝘩⋅RK⋅KJ²2⁻² = 1.000000017(12) [kg]/[kg] CODATA -> Metric

julia> mass(Conventional,Metric) # kg⋅kg⁻¹
𝘩⋅RK90⋅KJ90²2⁻² = 1.000000195536555 [kg]/[kg] Conventional -> Metric

julia> mass(English,Metric) # kg⋅slug⁻¹
lb = 0.45359237 [kg]/[lbm] English -> Metric

julia> mass(IAU,Metric) # kg⋅m⊙⁻¹
𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰ [kg]/[M☉] IAU☉ -> Metric

julia> mass(PlanckGauss,Metric) # kg⋅mP⁻¹
mP = 2.176434(24) × 10⁻⁸ [kg]/[mP] PlanckGauss -> Metric
MeasureSystems.massflowConstant
massflow : [MT⁻¹], [FL⁻¹T], [MT⁻¹], [MT⁻¹], [MT⁻¹]
massflow(U::UnitSystem,S::UnitSystem) = mass(U,S)/time(U,S)
massflow(v::Real,U::UnitSystem,S::UnitSystem) = v/massflow(U,S)
MT⁻¹ [ħ⁻¹𝘤²mₑ²ϕ⁻¹g₀⁻¹] Unified

Rate of massflow or mass per time (kg⋅s⁻¹), unit conversion factor.

julia> massflow(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [kg]/[g] Gauss -> Metric

julia> massflow(CODATA,Metric) # kg⋅kg⁻¹
𝘩⋅RK⋅KJ²2⁻² = 1.000000017(12) [kg]/[kg] CODATA -> Metric

julia> massflow(Conventional,Metric) # kg⋅kg⁻¹
𝘩⋅RK90⋅KJ90²2⁻² = 1.000000195536555 [kg]/[kg] Conventional -> Metric

julia> massflow(English,Metric) # kg⋅slug⁻¹
lb = 0.45359237 [kg]/[lbm] English -> Metric
MeasureSystems.lineardensityConstant
lineardensity : [ML⁻¹], [FL⁻²T²], [ML⁻¹], [ML⁻¹], [ML⁻¹]
lineardensity(U::UnitSystem,S::UnitSystem) = mass(U,S)/length(U,S)
lineardensity(v::Real,U::UnitSystem,S::UnitSystem) = v/lineardensity(U,S)
ML⁻¹ [ħ⁻¹𝘤⋅mₑ²ϕ⁻¹g₀⁻¹] Unified

Amount of lineardensity or mass per length (kg⋅m⁻¹), unit conversion factor.

julia> lineardensity(CGS,Metric) # kg⋅cm¹⋅g⁻¹⋅m⁻¹
2⁻¹5⁻¹ = 0.1 [kg⋅m⁻¹]/[g⋅cm⁻¹] Gauss -> Metric

julia> lineardensity(CGS,British) # slug⋅cm¹⋅g⁻¹⋅ft⁻¹
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lb⋅ft⁻²s²]/[g⋅cm⁻¹] Gauss -> British

julia> lineardensity(English,Metric) # kg⋅ft¹⋅lb⁻¹⋅m⁻¹
ft⁻¹lb = 1.4881639435695537 [kg⋅m⁻¹]/[lbm⋅ft⁻¹] English -> Metric
MeasureSystems.areadensityConstant
areadensity : [ML⁻²], [FL⁻³T²], [ML⁻²], [ML⁻²], [ML⁻²]
areadensity(U::UnitSystem,S::UnitSystem) = mass(U,S)/area(U,S)
areadensity(v::Real,U::UnitSystem,S::UnitSystem) = v/areadensity(U,S)
ML⁻² [ħ⁻²𝘤²mₑ³ϕ⁻²g₀⁻²] Unified

Surface or areadensity or mass per area (kg⋅m⁻²), unit conversion factor.

julia> areadensity(CGS,Metric) # kg⋅cm²⋅g⁻¹⋅m⁻²
2⋅5 = 10.0 [kg⋅m⁻²]/[g⋅cm⁻²] Gauss -> Metric

julia> areadensity(CGS,English) # lb⋅cm²⋅g⁻¹⋅ft⁻²
ft²lb⁻¹2⋅5 = 2.048161436225217 [lbm⋅ft⁻²]/[g⋅cm⁻²] Gauss -> English

julia> areadensity(English,Metric) # kg⋅ft²⋅lb⁻¹⋅m⁻²
ft⁻²lb = 4.88242763638305 [kg⋅m⁻²]/[lbm⋅ft⁻²] English -> Metric

julia> areadensity(British,Metric) # kg⋅ft²⋅slug⁻¹⋅m⁻²
g₀⋅ft⁻³lb = 157.08746384624618 [kg⋅m⁻²]/[lb⋅ft⁻³s²] British -> Metric
MeasureSystems.densityConstant
density : [ML⁻³], [FL⁻⁴T²], [ML⁻³], [ML⁻³], [ML⁻³]
density(U::UnitSystem,S::UnitSystem) = mass(U,S)/volume(U,S)
density(v::Real,U::UnitSystem,S::UnitSystem) = v/density(U,S)
ML⁻³ [ħ⁻³𝘤³mₑ⁴ϕ⁻³g₀⁻³] Unified

Specific mass or mass per volume or density (kg⋅m⁻³), unit conversion factor.

julia> density(CGS,Metric) # kg⋅cm³⋅g⁻¹⋅m⁻³
2³5³ = 1000.0 [kg⋅m⁻³]/[g⋅cm⁻³] Gauss -> Metric

julia> density(CGS,Brtish) # slug⋅cm³⋅g⁻¹⋅ft⁻³
g₀⁻¹ft⁴lb⁻¹2³5³ = 1.940320331979716 [slug⋅ft⁻³]/[g⋅cm⁻³] Gauss -> British

julia> density(English,Metric) # kg⋅ft³⋅lb⁻¹⋅m⁻³
ft⁻³lb = 16.018463373960138 [kg⋅m⁻³]/[lbm⋅ft⁻³] English -> Metric
MeasureSystems.specificweightConstant
specificweight : [FL⁻³], [FL⁻³], [ML⁻²T⁻²], [ML⁻²T⁻²], [ML⁻²T⁻²]
specificweight(U::UnitSystem,S::UnitSystem) = force(U,S)/volume(U,S)
specificweight(v::Real,U::UnitSystem,S::UnitSystem) = v/specificweight(U,S)
FL⁻³ [ħ⁻⁴𝘤⁶mₑ⁵ϕ⁻⁴g₀⁻⁵] Unified

Specific weight or force per volume (N⋅m⁻³ or lb⋅ft⁻³), unit conversion factor.

julia> specificweight(CGS,Metric) # N⋅cm³⋅dyn⁻¹⋅m⁻³
2⋅5 = 10.0 [kg⋅m⁻²s⁻²]/[g⋅cm⁻²s⁻²] Gauss -> Metric

julia> specificweight(CGS,Brtish) # lb⋅cm³⋅dyn⁻¹⋅ft⁻³
g₀⁻¹ft³lb⁻¹2⋅5 = 0.0636588035426416 [lb⋅ft⁻³]/[g⋅cm⁻²s⁻²] Gauss -> British

julia> specificweight(English,Metric) # N⋅ft³⋅lb⁻¹⋅m⁻³
g₀⋅ft⁻³lb = 157.08746384624618 [kg⋅m⁻²s⁻²]/[lbf⋅ft⁻³] English -> Metric
MeasureSystems.specificvolumeConstant
specificvolume : [M⁻¹L³], [F⁻¹L⁴T⁻²], [M⁻¹L³], [M⁻¹L³], [M⁻¹L³]
specificvolume(U::UnitSystem,S::UnitSystem) = volume(U,S)/mass(U,S)
specificvolume(v::Real,U::UnitSystem,S::UnitSystem) = v/specificvolume(U,S)
M⁻¹L³ [ħ³𝘤⁻³mₑ⁻⁴ϕ³g₀³] Unified

Reciprocal density or volume per mass or specificvolume (m³⋅kg), unit conversion factor.

julia> specificvolume(CGS,Metric) # g⋅m³⋅kg⁻¹⋅cm⁻³
2⁻³5⁻³ = 0.001 [kg⁻¹m³]/[g⁻¹cm³] Gauss -> Metric

julia> specificvolume(CGS,British) # kg⋅ft³⋅slug⁻¹⋅cm⁻³
g₀⋅ft⁻⁴lb⋅2⁻³5⁻³ = 0.5153788183931961 [lb⁻¹ft⁴s⁻²]/[g⁻¹cm³] Gauss -> British

julia> specificvolume(English,Metric) # lb⋅m³⋅kg⁻¹⋅ft⁻³
ft³lb⁻¹ = 0.062427960576144616 [kg⁻¹m³]/[lbm⁻¹ft³] English -> Metric
MeasureSystems.forceConstant
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
force(U::UnitSystem,S::UnitSystem) = inertia(U,S)*acceleration(U,S)
force(v::Real,U::UnitSystem,S::UnitSystem) = v/force(U,S)
F [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified

Weight or force or inertia times acceleration (N, kg⋅m⋅s⁻²), unit conversion factor.

julia> force(CGS,Metric) # N⋅dyn⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [N]/[dyn] Gauss -> Metric

julia> force(CGS,English) # lb⋅dyn⁻¹
g₀⁻¹lb⁻¹2⁻⁵5⁻⁵ = 2.248089430997105×10⁻⁶ [lbf]/[dyn] Gauss -> English

julia> force(English,Metric) # N⋅lb⁻¹
g₀⋅lb = 4.4482216152605 [N]/[lbf] English -> Metric

julia> force(FPS,Metric) # pdl⋅N⁻¹
ft⋅lb = 0.13825495437600002 [N]/[pdl] FPS -> Metric

julia> force(Engineering,Metric) # kp⋅N⁻¹
g₀ = 9.80665 [N]/[kgf] Engineering -> Metric
MeasureSystems.specificforceConstant
specificforce : [FM⁻¹], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
specificforce(U::UnitSystem,S::UnitSystem) = acceleration(U,S)/gravity(U,S)
specificforce(v::Real,U::UnitSystem,S::UnitSystem) = v/specificforce(U,S)
FM⁻¹ [ħ⁻¹𝘤³mₑ⋅ϕ⁻¹g₀⁻²] Unified

Weight or force per mass or gforce (N/kg, m⋅s⁻²), unit conversion factor.

julia> specificforce(CGS,Metric)
2⁻²5⁻² = 0.010000000000000002 [m⋅s⁻²]/[gal] Gauss -> Metric

julia> specificforce(Engineering,Metric)
g₀ = 9.80665 [N]/[kgf] Engineering -> Metric

julia> specificforce(English,Metric)
g₀ = 9.80665 [m⋅s⁻²]/[g₀] English -> Metric
MeasureSystems.gravityforceConstant
gravityforce : [F⁻¹MLT⁻²], [𝟙], [𝟙], [𝟙], [𝟙]
gravityforce(U::UnitSystem,S::UnitSystem) = acceleration(U,S)/specificforce(U,S)
gravityforce(v::Real,U::UnitSystem,S::UnitSystem) = v/gravityforce(U,S)
F⁻¹MLT⁻² [g₀] Unified

Reference acceleration per specificforce (𝟏, F⁻¹MLT⁻²), unit conversion factor.

julia> gravityforce(Metric,CGS)
𝟏 = 1.0 [s²]/[s²] Metric -> Gauss

julia> gravityforce(Metric,Engineering)
g₀ = 9.80665 [kgf⁻¹]/[N⁻¹] Metric -> Engineering

julia> gravityforce(Metric,English)
g₀⋅ft⁻¹ = 32.17404855643044 [lbf⁻¹lbm⋅ft]/[s²] Metric -> English
MeasureSystems.pressureConstant
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
pressure(U::UnitSystem,S::UnitSystem) = force(U,S)/area(U,S)
pressure(v::Real,U::UnitSystem,S::UnitSystem) = v/pressure(U,S)
FL⁻² [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Pressure or stress or force per area (Pa, N⋅m⁻², kg⋅m⁻¹⋅s⁻²), unit conversion factor.

julia> pressure(CGS,Metric) # Pa⋅Ba⁻¹
2⁻¹5⁻¹ = 0.1 [Pa]/[Ba] Gauss -> Metric

julia> 1/atm # Pa⋅atm⁻¹
atm⁻¹ = 9.869232667160129×10⁻⁶

julia> pressure(English,Metric) # Pa⋅ft²⋅lb⁻¹
g₀⋅ft⁻²lb = 47.88025898033583 [Pa]/[lbf⋅ft⁻²] English -> Metric

julia> pressure(Metric,IPS) # psi⋅Pa⁻¹
g₀⁻¹ft²lb⁻¹2⁻⁴3⁻² = 0.0001450377377302092 [lb⋅in⁻²]/[Pa] Metric -> IPS
MeasureSystems.compressibilityConstant
compressibility : [F⁻¹L²], [F⁻¹L²], [M⁻¹LT²], [M⁻¹LT²], [M⁻¹LT²]
compressibility(U::UnitSystem,S::UnitSystem) = 1/pressure(U,S)
compressibility(v::Real,U::UnitSystem,S::UnitSystem) = v/compressibility(U,S)
F⁻¹L² [ħ³𝘤⁻⁵mₑ⁻⁴ϕ³g₀⁴] Unified

Relative volume change or compressibility (Pa⁻¹), unit conversion factor.

julia> compressibility(CGS,Metric) # Ba⋅Pa⁻¹
2⋅5 = 10.0 [Pa⁻¹]/[Ba⁻¹] Gauss -> Metric

julia> compressibility(English,Metric) # lb⋅ft⁻²⋅Pa⁻¹
g₀⁻¹ft²lb⁻¹ = 0.02088543423315013 [Pa⁻¹]/[lbf⁻¹ft²] English -> Metric

julia> compressibility(Metric,IPS) # Pa⋅psi⁻¹
g₀⋅ft⁻²lb⋅2⁴3² = 6894.75729316836 [lb⁻¹in²]/[Pa⁻¹] Metric -> IPS
MeasureSystems.viscosityConstant
viscosity : [FL⁻²T], [FL⁻²T], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹]
viscosity(U::UnitSystem,S::UnitSystem) = inertia(U,S)/length(U,S)/time(U,S)
viscosity(v::Real,U::UnitSystem,S::UnitSystem) = v/viscosity(U,S)
FL⁻²T [ħ⁻²𝘤³mₑ³ϕ⁻²g₀⁻³] Unified

Resistance to deformation or viscosity (Pa⋅s, kg⋅m⁻¹⋅s⁻¹), unit conversion factor.

julia> viscosity(CGS,Metric) # Pa⋅Ba⁻¹
2⁻¹5⁻¹ = 0.1 [Pa]/[Ba] Gauss -> Metric

julia> viscosity(English,Metric) # Pa⋅ft²⋅lb⁻¹
g₀⋅ft⁻²lb = 47.88025898033583 [Pa]/[lbf⋅ft⁻²] English -> Metric

julia> viscosity(British,Metric) # Pa⋅ft²⋅lb⁻¹
g₀⋅ft⁻²lb = 47.88025898033583 [Pa]/[lb⋅ft⁻²] British -> Metric
MeasureSystems.diffusivityConstant
diffusivity : [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹]
diffusivity(U::UnitSystem,S::UnitSystem) = speed(U,S)*length(U,S)
diffusivity(v::Real,U::UnitSystem,S::UnitSystem) = v/diffusivity(U,S)
L²T⁻¹ [ħ⋅mₑ⁻¹ϕ⋅g₀] Unified

Thermal diffusivity or kinematic viscostiy (m²⋅s⁻¹), unit conversion factor.

julia> diffusivity(CGS,Metric) # m²⋅cm⁻²
2⁻⁴5⁻⁴ = 0.0001 [m²]/[cm²] Gauss -> Metric

julia> diffusivity(English,Metric) # m²⋅ft⁻²
ft² = 0.09290304 [m²]/[ft²] English -> Metric

julia> diffusivity(Survey,English) # ft²⋅ftUS⁻²
ft⁻²ftUS² = 1.0000040000119996 [ft²]/[ft²] Survey -> English
MeasureSystems.rotationalinertiaConstant
rotationalinertia : [ML²], [FLT²], [ML²], [ML²], [ML²]
rotationalinertia(U::UnitSystem,S::UnitSystem) = mass(U,S)*area(U,S)
rotationalinertia(v::Real,U::UnitSystem,S::UnitSystem) = v/rotationalinertia(U,S)
ML² [ħ²𝘤⁻²mₑ⁻¹ϕ²g₀²] Unified

Moment of inertia or rotationalinertia (kg⋅m²), unit conversion factor.

julia> rotationalinertia(CGS,Metric) # kg⋅m²⋅g⁻¹⋅cm⁻²
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [kg⋅m²]/[g⋅cm²] Gauss -> Metric

julia> rotationalinertia(CGS,British) # slug⋅ft²⋅g⁻¹⋅cm⁻²
g₀⁻¹ft⁻¹lb⁻¹2⁻⁷5⁻⁷ = 7.375621492772653×10⁻⁸ [lb⋅ft⋅s²]/[g⋅cm²] Gauss -> British

julia> rotationalinertia(English,Metric) # kg⋅m²⋅lb⁻¹⋅ft⁻²
ft²lb = 0.042140110093804806 [kg⋅m²]/[lbm⋅ft²] English -> Metric
MeasureSystems.impulseConstant
impulse : [FT], [FT], [MLT⁻¹], [MLT⁻¹], [MLT⁻¹]
impulse(U::UnitSystem,S::UnitSystem) = force(U,S)*time(U,S)
impulse(v::Real,U::UnitSystem,S::UnitSystem) = v/impulse(U,S)
FT [𝘤⋅mₑ⋅g₀⁻¹] Unified

Linear impulse or force times time (N⋅s, kg⋅m⋅s⁻¹), unit conversion factor.

julia> impulse(CGS,Metric) # N⋅dyn⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [N]/[dyn] Gauss -> Metric

julia> impulse(CGS,English) # lb⋅dyn⁻¹
g₀⁻¹lb⁻¹2⁻⁵5⁻⁵ = 2.248089430997105×10⁻⁶ [lbf]/[dyn] Gauss -> English

julia> impulse(English,Metric) # N⋅lb⁻¹
g₀⋅lb = 4.4482216152605 [N]/[lbf] English -> Metric
MeasureSystems.momentumConstant
momentum : [MLT⁻¹], [FT], [MLT⁻¹], [MLT⁻¹], [MLT⁻¹]
momentum(U::UnitSystem,S::UnitSystem) = mass(U,S)*speed(U,S)
momentum(v::Real,U::UnitSystem,S::UnitSystem) = v/momentum(U,S)
MLT⁻¹ [𝘤⋅mₑ] Unified

Linear momentum or mass times speed (N⋅s, kg⋅m⋅s⁻¹), unit conversion factor.

julia> momentum(CGS,Metric) # N⋅dyn⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [kg⋅m]/[g⋅cm] Gauss -> Metric

julia> momentum(CGS,English) # lb⋅dyn⁻¹
ft⁻¹lb⁻¹2⁻⁵5⁻⁵ = 7.233013851209893×10⁻⁵ [lbm⋅ft]/[g⋅cm] Gauss -> English

julia> momentum(British,Metric) # N⋅lb⁻¹
g₀⋅lb = 4.4482216152605 [kg⋅m]/[lb⋅s²] British -> Metric
MeasureSystems.angularmomentumConstant
angularmomentum : [FLTA⁻¹], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
angularmomentum(U::UnitSystem,S::UnitSystem) = impulse(U,S)*length(U,S)/angle(U,S)
angularmomentum(v::Real,U::UnitSystem,S::UnitSystem) = v/angularmomentum(U,S)
FLTA⁻¹ [ħ] Unified

Rotational momentum or angularmomentum (N⋅m⋅s, kg⋅m²⋅s⁻¹), unit conversion factor.

julia> momentum(CGS,Metric) # N⋅m⋅dyn⁻¹⋅cm⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [kg⋅m]/[g⋅cm] Gauss -> Metric

julia> momentum(CGS,English) # lb⋅ft⋅dyn⁻¹⋅cm⁻¹
ft⁻¹lb⁻¹2⁻⁵5⁻⁵ = 7.233013851209893×10⁻⁵ [lbm⋅ft]/[g⋅cm] Gauss -> English

julia> momentum(British,Metric) # N⋅m⋅lb⁻¹⋅ft⁻¹
g₀⋅lb = 4.4482216152605 [kg⋅m]/[lb⋅s²] British -> Metric
MeasureSystems.yankConstant
yank : [MLT⁻³], [FT⁻¹], [MLT⁻³], [MLT⁻³], [MLT⁻³]
yank(U::UnitSystem,S::UnitSystem) = mass(U,S)*jerk(U,S)
yank(v::Real,U::UnitSystem,S::UnitSystem) = v/yank(U,S)
MLT⁻³ [ħ⁻²𝘤⁵mₑ³ϕ⁻²g₀⁻²] Unified

Rate of change of force or yank (N⋅s⁻¹, kg⋅m⋅s⁻³), unit conversion factor.

julia> yank(CGS,Metric) # N⋅dyn⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [kg⋅m]/[g⋅cm] Gauss -> Metric

julia> yank(CGS,English) # lb⋅dyn⁻¹
ft⁻¹lb⁻¹2⁻⁵5⁻⁵ = 7.233013851209893×10⁻⁵ [lbm⋅ft]/[g⋅cm] Gauss -> English

julia> yank(British,Metric) # N⋅lb⁻¹⋅
g₀⋅lb = 4.4482216152605 [kg⋅m]/[lb⋅s²] British -> Metric
MeasureSystems.energyConstant
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
energy(U::UnitSystem,S::UnitSystem) = mass(U,S)*specificenergy(U,S)
energy(v::Real,U::UnitSystem,S::UnitSystem) = v/energy(U,S)
FL [𝘤²mₑ⋅g₀⁻¹] Unified

Work or heat or energy (J, N⋅m, kg⋅m²⋅s⁻²), unit conversion factor.

julia> energy(CGS,Metric) # J⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> energy(CGS,English) # ft⋅lb⋅erg⁻¹
g₀⁻¹ft⁻¹lb⁻¹2⁻⁷5⁻⁷ = 7.375621492772653×10⁻⁸ [lbf⋅ft]/[erg] Gauss -> English

julia> energy(English,Metric) # J⋅ft⁻¹⋅lb⁻¹
g₀⋅ft⋅lb = 1.3558179483314003 [J]/[lbf⋅ft] English -> Metric

julia> 0.001/3600 # J⋅kW⁻¹⋅h⁻¹
2.7777777777777776e-7

julia> 1/elementarycharge(SI2019) # J⋅eV⁻¹
𝘦⁻¹ = 6.241509074460763×10¹⁸ [C⁻¹] SI2019
MeasureSystems.specificenergyConstant
specificenergy : [FM⁻¹L], [L²T⁻²], [L²T⁻²], [L²T⁻²], [L²T⁻²]
specificenergy(U::UnitSystem,S::UnitSystem) = speed(U,S)^2/gravity(U,S)
specificenergy(v::Real,U::UnitSystem,S::UnitSystem) = v/specificenergy(U,S)
FM⁻¹L [𝘤²g₀⁻¹] Unified

Massic energy or energy per mass or specificenergy (J⋅kg⁻¹), unit conversion factor.

julia> specificenergy(CGS,Metric) # m²⋅cm⁻²
2⁻⁴5⁻⁴ = 0.0001 [J⋅kg⁻¹]/[erg⋅g⁻¹] Gauss -> Metric

julia> specificenergy(IAU,Metric) # m²⋅day²⋅s⁻²⋅au⁻²
au²2⁻¹⁴3⁻⁶5⁻⁴ = 2.99794277772(12) × 10¹² [J⋅kg⁻¹]/[au²D⁻²] IAU☉ -> Metric

julia> specificenergy(English,Metric) # m²⋅ft⁻²
g₀⋅ft = 2.98906692 [J⋅kg⁻¹]/[lbf⋅lbm⁻¹ft] English -> Metric

julia> specificenergy(Survey,English) # ft²⋅ftUS⁻²
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.actionConstant
action : [FLT], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
action(U::UnitSystem,S::UnitSystem) = energy(U,S)*time(U,S)
action(v::Real,U::UnitSystem,S::UnitSystem) = v/action(U,S)
FLT [ħ⋅ϕ] Unified

Integrated momentum over length or action (J⋅s, N⋅m⋅s), unit conversion factor.

julia> action(CGS,Metric) # J⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> action(CGS,English) # ft⋅lb⋅erg⁻¹
g₀⁻¹ft⁻¹lb⁻¹2⁻⁷5⁻⁷ = 7.375621492772653×10⁻⁸ [lbf⋅ft]/[erg] Gauss -> English

julia> action(English,Metric) # J⋅ft⁻¹⋅lb⁻¹
g₀⋅ft⋅lb = 1.3558179483314003 [J]/[lbf⋅ft] English -> Metric
MeasureSystems.fluenceConstant
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
fluence(U::UnitSystem,S::UnitSystem) = energy(U,S)/area(U,S
fluence(v::Real,U::UnitSystem,S::UnitSystem) = v/fluence(U,S)
FL⁻¹ [ħ⁻²𝘤⁴mₑ³ϕ⁻²g₀⁻³] Unified

Radiant exposure or force per length or stiffness (N⋅m⁻¹, J⋅m⁻²), unit conversion factor.

julia> fluence(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [kg]/[g] Gauss -> Metric

julia> fluence(CGS,English) # lb⋅g⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [lbf⋅ft⁻¹]/[dyn⋅cm⁻¹] Gauss -> English

julia> fluence(CODATA,Metric) # kg⋅kg⁻¹
𝘩⋅RK⋅KJ²2⁻² = 1.000000017(12) [kg]/[kg] CODATA -> Metric

julia> fluence(Conventional,Metric) # kg⋅kg⁻¹
𝘩⋅RK90⋅KJ90²2⁻² = 1.000000195536555 [N]/[N] Conventional -> Metric

julia> fluence(English,Metric) # kg⋅lb⁻¹
g₀⋅ft⁻¹lb = 14.593902937206364 [N⋅m⁻¹]/[lbf⋅ft⁻¹] English -> Metric
MeasureSystems.powerConstant
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
power(U::UnitSystem,S::UnitSystem) = energy(U,S)/time(U,S))
power(v::Real,U::UnitSystem,S::UnitSystem) = v/power(U,S)
FLT⁻¹ [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Radiant flux or power or energy per time (W, J⋅s⁻¹, kg⋅m²⋅s⁻³), unit conversion factor.

julia> power(CGS,Metric) # W⋅s⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> power(English,Metric) # W⋅s⋅ft⁻¹⋅lb⁻¹
g₀⋅ft⋅lb = 1.3558179483314003 [J]/[lbf⋅ft] English -> Metric
MeasureSystems.powerdensityConstant
powerdensity : [FL⁻²T⁻¹], [FL⁻²T⁻¹], [ML⁻¹T⁻³], [ML⁻¹T⁻³], [ML⁻¹T⁻³]
powerdensity(U::UnitSystem,S::UnitSystem) = power(U,S)/volume(U,S)
powerdensity(v::Real,U::UnitSystem,S::UnitSystem) = v/powerdensity(U,S)
FL⁻²T⁻¹ [ħ⁻⁴𝘤⁷mₑ⁵ϕ⁻⁴g₀⁻⁵] Unified

Spectral irradiance (volume) or powerdensity (W⋅m⁻³), unit conversion factor.

julia> powerdensity(CGS,Metric) # kg⋅cm⋅g⁻¹⋅m⁻¹
2⁻¹5⁻¹ = 0.1 [Pa]/[Ba] Gauss -> Metric

julia> powerdensity(CGS,English) # lb⋅cm⋅g⁻¹⋅ft⁻¹
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lbf⋅ft⁻²]/[Ba] Gauss -> English

julia> powerdensity(English,Metric) # kg⋅ft⋅lb⁻¹⋅m⁻¹
g₀⋅ft⁻²lb = 47.88025898033583 [Pa]/[lbf⋅ft⁻²] English -> Metric
MeasureSystems.irradianceConstant
irradiance : [FL⁻¹T⁻¹], [FL⁻¹T⁻¹], [MT⁻³], [MT⁻³], [MT⁻³]
irradiance(U::UnitSystem,S::UnitSystem) = power(U,S)/area(U,S)
irradiance(v::Real,U::UnitSystem,S::UnitSystem) = v/irradiance(U,S)
FL⁻¹T⁻¹ [ħ⁻³𝘤⁶mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Heat flux density or irradiance or power per area (W⋅m⁻², kg⋅s⁻³), unit conversion factor.

julia> irradiance(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [N⋅m⁻¹]/[dyn⋅cm⁻¹] Gauss -> Metric

julia> irradiance(CGS,English) # lb⋅g⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [lbf⋅ft⁻¹]/[dyn⋅cm⁻¹] Gauss -> English

julia> irradiance(English,Metric) # kg⋅lb⁻¹
g₀⋅ft⁻¹lb = 14.593902937206364 [N⋅m⁻¹]/[lbf⋅ft⁻¹] English -> Metric
MeasureSystems.radianceConstant
radiance : [FL⁻¹T⁻¹A⁻²], [FL⁻¹T⁻¹], [MT⁻³], [MT⁻³], [MT⁻³]
radiance(U::UnitSystem,S::UnitSystem) = irradiance(U,S)/solidangle(U,S)
radiance(v::Real,U::UnitSystem,S::UnitSystem) = v/radiance(U,S)
FL⁻¹T⁻¹A⁻² [ħ⁻³𝘤⁶mₑ⁴ϕ⁻⁵g₀⁻⁴] Unified

Radiance or irradiance per solidangle (W⋅m⁻²⋅sr⁻¹, kg⋅s⁻³⋅sr⁻¹), unit conversion factor.

julia> radiance(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [N⋅m⁻¹]/[dyn⋅cm⁻¹] Gauss -> Metric

julia> radiance(CGS,English) # lb⋅g⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [lbf⋅ft⁻¹]/[dyn⋅cm⁻¹] Gauss -> English

julia> radiance(English,Metric) # kg⋅lb⁻¹
g₀⋅ft⁻¹lb = 14.593902937206364 [N⋅m⁻¹]/[lbf⋅ft⁻¹] English -> Metric
MeasureSystems.radiantintensityConstant
radiantintensity : [FLT⁻¹A⁻²], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
radiantintensity(U::UnitSystem,S::UnitSystem) = power(U,S)/solidangle(U,S)
radiantintensity(v::Real,U::UnitSystem,S::UnitSystem) = v/radiantintensity(U,S)
FLT⁻¹A⁻² [ħ⁻¹𝘤⁴mₑ²ϕ⁻³g₀⁻²] Unified

Radiant intensity or power per solidangle (W⋅sr⁻¹, W⋅rad⁻²), unit conversion factor.

julia> radiantintensity(CGS,Metric) # W⋅s⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> radiantintensity(English,Metric) # W⋅s⋅ft⁻¹⋅lb⁻¹
g₀⋅ft⋅lb = 1.3558179483314003 [J]/[lbf⋅ft] English -> Metric
MeasureSystems.spectralfluxConstant
spectralflux : [FT⁻¹], [FT⁻¹], [MLT⁻³], [MLT⁻³], [MLT⁻³]
spectralflux(U::UnitSystem,S::UnitSystem) = power(U,S)/length(U,S)
spectralflux(v::Real,U::UnitSystem,S::UnitSystem) = v/spectralflux(U,S)
FT⁻¹ [ħ⁻²𝘤⁵mₑ³ϕ⁻²g₀⁻³] Unified

Spectral power or power per wave length (W⋅m⁻¹), unit conversion factor.

julia> spectralflux(CGS,Metric) # kg⋅m⋅g⁻¹⋅cm⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [N]/[dyn] Gauss -> Metric

julia> spectralflux(CGS,English) # lb⋅ft⋅g⁻¹⋅cm⁻¹
g₀⁻¹lb⁻¹2⁻⁵5⁻⁵ = 2.248089430997105×10⁻⁶ [lbf]/[dyn] Gauss -> English

julia> spectralflux(English,Metric) # kg⋅m⋅lb⁻¹⋅ft⁻¹
g₀⋅lb = 4.4482216152605 [N]/[lbf] English -> Metric
MeasureSystems.spectralexposureConstant
spectralexposure : [FL⁻¹T], [FL⁻¹T], [MT⁻¹], [MT⁻¹], [MT⁻¹]
spectralexposure(U::UnitSystem,S::UnitSystem) = force(U,S)/speed(U,S)
spectralexposure(v::Real,U::UnitSystem,S::UnitSystem) = v/spectralexposure(U,S)
FL⁻¹T [ħ⁻¹𝘤²mₑ²ϕ⁻¹g₀⁻²] Unified

Spectral exposure or fluence per frequency (N⋅s⋅m⁻¹, J⋅s⋅m⁻²), unit conversion factor.

julia> spectralexposure(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [N⋅m⁻¹]/[dyn⋅cm⁻¹] Gauss -> Metric

julia> spectralexposure(CGS,English) # lb⋅g⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [lbf⋅ft⁻¹]/[dyn⋅cm⁻¹] Gauss -> English

julia> spectralexposure(CODATA,Metric) # kg⋅kg⁻¹
𝘩⋅RK⋅KJ²2⁻² = 1.000000017(12) [N]/[N] CODATA -> Metric

julia> spectralexposure(Conventional,Metric) # kg⋅kg⁻¹
𝘩⋅RK90⋅KJ90²2⁻² = 1.000000195536555 [N]/[N] Conventional -> Metric

julia> spectralexposure(English,Metric) # kg⋅lb⁻¹
g₀⋅ft⁻¹lb = 14.593902937206364 [N⋅m⁻¹]/[lbf⋅ft⁻¹] English -> Metric
MeasureSystems.soundexposureConstant
soundexposure : [F²L⁻⁴T], [F²L⁻⁴T], [M²L⁻²T⁻³], [M²L⁻²T⁻³], [M²L⁻²T⁻³]
soundexposure(U::UnitSystem,S::UnitSystem) = pressure(U,S)^2*time(U,S)
soundexposure(v::Real,U::UnitSystem,S::UnitSystem) = v/soundexposure(U,S)
F²L⁻⁴T [ħ⁻⁵𝘤⁸mₑ⁷ϕ⁻⁵g₀⁻⁷] Unified

Square of pressure by time or soundexposure (Pa²⋅s, N²⋅m⁻⁴), unit conversion factor.

julia> soundexposure(CGS,Metric) # Pa²⋅Ba⁻²
2⁻²5⁻² = 0.010000000000000002 [kg²m⁻²s⁻⁴]/[g²cm⁻²s⁻⁴] Gauss -> Metric

julia> soundexposure(English,Metric) # Pa²⋅ft⁴⋅lb⁻²
g₀²ft⁻⁴lb² = 2292.519200024031 [kg²m⁻²s⁻⁴]/[lbf²ft⁻⁴] English -> Metric
MeasureSystems.impedanceMethod
impedance : [FL⁻⁵T], [FL⁻⁵T], [ML⁻⁴T⁻¹], [ML⁻⁴T⁻¹], [ML⁻⁴T⁻¹]
impedance(U::UnitSystem,S::UnitSystem) = specificimpedance(U,S)/area(U,S)
impedance(v::Real,U::UnitSystem,S::UnitSystem) = v/impedance(U,S)
FL⁻⁵T [ħ⁻⁵𝘤⁶mₑ⁶ϕ⁻⁵g₀⁻⁶] Unified

Acoustic impedance (Rayl⋅m⁻², Pa⋅s⋅m⁻³, kg⋅s⁻¹⋅m⁻⁴), unit conversion factor.

julia> impedance(CGS,Metric) # Pa⋅cm³⋅m⁻³⋅Ba⁻¹
2⁵5⁵ = 100000.0 [kg⋅m⁻⁴s⁻²]/[g⋅cm⁻⁴s⁻²] Gauss -> Metric

julia> impedance(English,Metric) # Pa⋅ft⁵⋅m⁻³⋅lb⁻¹
g₀⋅ft⁻⁵lb = 1690.875388429121 [kg⋅m⁻⁴s⁻²]/[lbf⋅ft⁻⁵] English -> Metric
MeasureSystems.specificimpedanceConstant
specificimpedance : [FL⁻³T], [FL⁻³T], [ML⁻²T⁻¹], [ML⁻²T⁻¹], [ML⁻²T⁻¹]
specificimpedance(U::UnitSystem,S::UnitSystem) = pressure(U,S)/speed(U,S)
specificimpedance(v::Real,U::UnitSystem,S::UnitSystem) = v/specificimpedance(U,S)
FL⁻³T [ħ⁻³𝘤⁴mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Characteristic specific acoustic impedance (Rayl, Pa⋅s⋅m⁻¹), unit conversion factor.

julia> specificimpedance(CGS,Metric) # Pa⋅cm⋅m⁻¹⋅Ba⁻¹
2⋅5 = 10.0 [kg⋅m⁻²s⁻²]/[g⋅cm⁻²s⁻²] Gauss -> Metric

julia> specificimpedance(English,Metric) # Pa⋅ft³⋅m⁻¹⋅lb⁻¹
g₀⋅ft⁻³lb = 157.08746384624618 [kg⋅m⁻²s⁻²]/[lbf⋅ft⁻³] English -> Metric
MeasureSystems.admittanceConstant
admittance : [F⁻¹L⁵T⁻¹], [F⁻¹L⁵T⁻¹], [M⁻¹L⁴T], [M⁻¹L⁴T], [M⁻¹L⁴T]
admittance(U::UnitSystem,S::UnitSystem) = area(U,S)/specificimpedance(U,S)
admittance(v::Real,U::UnitSystem,S::UnitSystem) = v/admittance(U,S)
F⁻¹L⁵T⁻¹ [ħ⁵𝘤⁻⁶mₑ⁻⁶ϕ⁵g₀⁶] Unified

Acoustic admittance (m²⋅Rayl⁻¹, m³⋅s⁻¹⋅Pa⁻¹, m⁴⋅s⋅kg⁻¹), unit conversion factor.

julia> admittance(CGS,Metric) # Ba⋅m³⋅cm⁻³⋅Pa⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [kg⁻¹m⁴s²]/[g⁻¹cm⁴s²] Gauss -> Metric

julia> admittance(English,Metric) # lb⋅m³⋅ft⁻⁵⋅Pa⁻¹
g₀⁻¹ft⁵lb⁻¹ = 0.0005914096371874175 [kg⁻¹m⁴s²]/[lbf⁻¹ft⁵] English -> Metric
MeasureSystems.complianceConstant
compliance : [M⁻¹T²], [F⁻¹L], [M⁻¹T²], [M⁻¹T²], [M⁻¹T²]
compliance(U::UnitSystem,S::UnitSystem) = time(U,S)^2/mass(U,S)
compliance(v::Real,U::UnitSystem,S::UnitSystem) = v/compliance(U,S)
M⁻¹T² [ħ²𝘤⁻⁴mₑ⁻³ϕ²g₀²] Unified

Acoustic compliance is reciprocal of fluence (m⋅N⁻¹, m³⋅Pa⁻¹), unit conversion factor.

julia> compliance(CGS,Metric) # kg⋅g⁻¹
2³5³ = 1000.0 [kg⁻¹]/[g⁻¹] Gauss -> Metric

julia> compliance(CGS,English) # slug⋅g⁻¹
lb⋅2³5³ = 453.59237 [lbm⁻¹]/[g⁻¹] Gauss -> English

julia> compliance(English,Metric) # kg⋅lb⁻¹
lb⁻¹ = 2.2046226218487757 [kg⁻¹]/[lbm⁻¹] English -> Metric
MeasureSystems.inertanceConstant
inertance : [ML⁻⁴], [FL⁻⁵T²], [ML⁻⁴], [ML⁻⁴], [ML⁻⁴]
inertance(U::UnitSystem,S::UnitSystem) = mass(U,S)/length(U,S)^4
inertance(v::Real,U::UnitSystem,S::UnitSystem) = v/inertance(U,S)
ML⁻⁴ [ħ⁻⁴𝘤⁴mₑ⁵ϕ⁻⁴g₀⁻⁴] Unified

Acoustic mass or inertance (kg⋅m⁴, Pa⋅s²⋅m⁻³), unit conversion factor.

julia> inertance(CGS,Metric) # kg⋅cm⁴⋅g⁻¹⋅m⁻⁴
2⁵5⁵ = 100000.0 [kg⋅m⁻⁴]/[g⋅cm⁻⁴] Gauss -> Metric

julia> inertance(CGS,English) # slug⋅cm⁴⋅g⁻¹⋅ft⁻⁴
ft⁴lb⁻¹2⁵5⁵ = 1902.804238360888 [lbm⋅ft⁻⁴]/[g⋅cm⁻⁴] Gauss -> English

julia> inertance(English,Metric) # kg⋅ft⁴⋅lb⁻¹⋅m⁻⁴
ft⁻⁴lb = 52.55401369409494 [kg⋅m⁻⁴]/[lbm⋅ft⁻⁴] English -> Metric

Electromagnetic Units

The following unit conversions have been verified for CGS UnitSystem variants: reference information.

MeasureSystems.chargeMethod
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
charge(U::UnitSystem,S::UnitSystem) = sqrt(action(U,S)*current(U,S)/electricpotential(U,S))
charge(v::Real,U::UnitSystem,S::UnitSystem) = v/charge(U,S)
Q [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified

Electric charge quantization (C, A⋅s), unit conversion factor.

julia> charge(EMU,Metric) # C⋅abC⁻¹
2⋅5 = 10.0 [C]/[g¹ᐟ²cm¹ᐟ²] EMU -> Metric

julia> charge(EMU,ESU) # stC⋅abC⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹]/[g¹ᐟ²cm¹ᐟ²] EMU -> ESU

julia> charge(ESU,Metric) # C⋅stC⁻¹
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [C]/[g¹ᐟ²cm³ᐟ²s⁻¹] ESU -> Metric

julia> charge(Metric,SI2019) # C⋅C⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019

julia> charge(Hartree,SI2019) # C⋅𝘦⁻¹
𝘦 = 1.602176634×10⁻¹⁹ [C]/[𝘦] Hartree -> SI2019
MeasureSystems.chargedensityConstant
chargedensity : [L⁻³Q], [L⁻³Q], [L⁻³Q], [M¹ᐟ²L⁻⁵ᐟ²], [M¹ᐟ²L⁻³ᐟ²T⁻¹]
chargedensity(U::UnitSystem,S::UnitSystem) = charge(U,S)/volume(U,S)
chargedensity(v::Real,U::UnitSystem,S::UnitSystem) = v/chargedensity(U,S)
L⁻³Q [ħ⁻⁵ᐟ²𝘤⁵ᐟ²μ₀⁻¹ᐟ²mₑ³ϕ⁻⁵ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻³] Unified

Volume chargedensity or charge per volume (C⋅m⁻³), unit conversion factor.

julia> chargedensity(EMU,Metric) # C⋅cm³⋅abC⁻¹⋅m⁻³
2⁷5⁷ = 1.0×10⁷ [m⁻³C]/[g¹ᐟ²cm⁻⁵ᐟ²] EMU -> Metric

julia> chargedensity(ESU,Metric) # C⋅cm³⋅statC⁻¹⋅m⁼³
𝘤⁻¹2⁵5⁵ = 0.00033356409519815205 [m⁻³C]/[g¹ᐟ²cm⁻³ᐟ²s⁻¹] ESU -> Metric

julia> chargedensity(Metric,SI2019) # C⋅C⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.linearchargedensityConstant
linearchargedensity : [L⁻¹Q], [L⁻¹Q], [L⁻¹Q], [M¹ᐟ²L⁻¹ᐟ²], [M¹ᐟ²L¹ᐟ²T⁻¹]
linearchargedensity(U::UnitSystem,S::UnitSystem) = charge(U,S)/length(U,S)
linearchargedensity(v::Real,U::UnitSystem,S::UnitSystem) = v/linearchargedensity(U,S)
L⁻¹Q [ħ⁻¹ᐟ²𝘤¹ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified

Amount of linearchargedensity or charge per length (C⋅m⁻¹), unit conversion factor.

julia> linearchargedensity(EMU,Metric) # C⋅cm⋅abC⁻¹⋅m⁻¹
2³5³ = 1000.0 [m⁻¹C]/[g¹ᐟ²cm⁻¹ᐟ²] EMU -> Metric

julia> linearchargedensity(ESU,Metric) # C⋅cm⋅statC⁻¹⋅m⁼¹
𝘤⁻¹2⋅5 = 3.3356409519815205×10⁻⁸ [m⁻¹C]/[g¹ᐟ²cm¹ᐟ²s⁻¹] ESU -> Metric

julia> linearchargedensity(Metric,SI2019) # C⋅C⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.exposureConstant
exposure : [M⁻¹Q], [F⁻¹LT⁻²Q], [M⁻¹Q], [M⁻¹ᐟ²L¹ᐟ²], [M⁻¹ᐟ²L³ᐟ²T⁻¹]
exposure(U::UnitSystem,S::UnitSystem) = charge(U,S)/mass(U,S)
exposure(v::Real,U::UnitSystem,S::UnitSystem) = v/exposure(U,S)
M⁻¹Q [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified

Ionizing radiation exposure or charge per mass (C⋅kg⁻¹), unit conversion factor.

julia> exposure(EMU,Metric) # C⋅g⋅abC⁻¹⋅kg
2⁴5⁴ = 10000.0 [kg⁻¹C]/[g⁻¹ᐟ²cm¹ᐟ²] EMU -> Metric

julia> exposure(EMU,ESU) # statC⋅abC⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹]/[g¹ᐟ²cm¹ᐟ²] EMU -> ESU

julia> expsure(ESU,Metric) # C⋅g⋅statC⁻¹⋅kg
𝘤⁻¹2²5² = 3.3356409519815204×10⁻⁷ [kg⁻¹C]/[g⁻¹ᐟ²cm³ᐟ²s⁻¹] ESU -> Metric

julia> exposure(Metric,SI2019) # C⋅C⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.mobilityConstant
mobility : [FL³T⁻¹Q⁻¹], [FL³T⁻¹Q⁻¹], [ML⁴T⁻³Q⁻¹], [M¹ᐟ²L⁷ᐟ²T⁻³], [M¹ᐟ²L⁵ᐟ²T⁻²]
mobility(U::UnitSystem,S::UnitSystem) = length(U,S)*speed(U,S)/electricpotential(U,S)
mobility(v::Real,U::UnitSystem,S::UnitSystem) = v/mobility(U,S)
FL³T⁻¹Q⁻¹ [ħ¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²αL] Unified

Electron mobility in solid state physics (m²⋅V⁻¹⋅s⁻¹, A⋅s⋅kg⁻¹), unit conversion factor.

julia> mobility(EMU,Metric) # C⋅g⋅abC⁻¹⋅kg
2⁻¹²5⁻¹² = 1.0000000000000002×10⁻¹² [kg⋅m⁴s⁻²C⁻¹]/[g¹ᐟ²cm⁷ᐟ²s⁻²] EMU -> Metric

julia> mobility(EMU,ESU) # statC⋅abC⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g⁻¹ᐟ²cm⁻³ᐟ²s]/[g⁻¹ᐟ²cm⁻¹ᐟ²] EMU -> ESU

julia> mobility(ESU,Metric) # C⋅g⋅statC⁻¹⋅kg
𝘤⋅2⁻¹⁰5⁻¹⁰ = 0.029979245800000002 [kg⋅m⁴s⁻²C⁻¹]/[g¹ᐟ²cm⁵ᐟ²s⁻¹] ESU -> Metric

julia> mobility(Metric,SI2019) # C⋅C⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.currentConstant
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
current(U::UnitSystem,S::UnitSystem) = charge(U,S)/time(U,S)
current(v::Real,U::UnitSystem,S::UnitSystem) = v/current(U,S)
T⁻¹Q [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified

Flow of electric charge per time or current (A, C⋅s⁻¹), unit conversion factor.

julia> current(EMU,Metric) # A⋅Bi⁻¹
2⋅5 = 10.0 [C]/[g¹ᐟ²cm¹ᐟ²] EMU -> Metric

julia> current(EMU,ESU) # statA⋅Bi⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹]/[g¹ᐟ²cm¹ᐟ²] EMU -> ESU

julia> current(ESU,Metric) # A⋅statA⁻¹
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [C]/[g¹ᐟ²cm³ᐟ²s⁻¹] ESU -> Metric

julia> current(Metric,SI2019) # A⋅A⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.currentdensityConstant
currentdensity : [L⁻²T⁻¹Q], [L⁻²T⁻¹Q], [L⁻²T⁻¹Q], [M¹ᐟ²L⁻³ᐟ²T⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻²]
currentdensity(U::UnitSystem,S::UnitSystem) = current(U,S)/area(U,S)
currentdensity(v::Real,U::UnitSystem,S::UnitSystem) = v/currentdensity(U,S)
L⁻²T⁻¹Q [ħ⁻⁵ᐟ²𝘤⁷ᐟ²μ₀⁻¹ᐟ²mₑ³ϕ⁻⁵ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻³] Unified

Cross-section currentdensity or current per area (A⋅m⁻²), unit conversion factor.

julia> currentdensity(EMU,Metric) # A⋅cm²⋅Bi⁻¹⋅m⁻²
2⁵5⁵ = 100000.0 [m⁻²C]/[g¹ᐟ²cm⁻³ᐟ²] EMU -> Metric

julia> currentdensity(ESU,Metric) # A⋅cm²⋅statA⁻¹⋅m⁼²
𝘤⁻¹2³5³ = 3.3356409519815205×10⁻⁶ [m⁻²C]/[g¹ᐟ²cm⁻¹ᐟ²s⁻¹] ESU -> Metric

julia> currentdensity(Metric,SI2019) # A⋅A⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.resistanceConstant
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
resistance(U::UnitSystem,S::UnitSystem) = electricpotential(U,S)/current(U,S)
resistance(v::Real,U::UnitSystem,S::UnitSystem) = v/resistance(U,S)
FLTQ⁻² [𝘤⋅μ₀⋅λ⋅αL²] Unified

Electrical resistance or electricpotential per current (Ω, S⁻¹, V⋅A⁻¹), unit conversion factor.

julia> resistance(EMU,Metric) # Ω⋅abΩ⁻¹
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [F⁻¹]/[gal] EMU -> Metric

julia> resistance(ESU,Metric) # Ω⋅statΩ⁻¹
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [F⁻¹]/[cm⁻¹] ESU -> Metric

julia> resistance(Metric,SI2019) # Ω⋅Ω⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹2⁷5⁷ = 1.00000000055(15) [C⁻²]/[C⁻²] Metric -> SI2019
MeasureSystems.conductanceMethod
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
conductance(U::UnitSystem,S::UnitSystem) = current(U,S)/electricpotential(U,S)
conductance(v::Real,U::UnitSystem,S::UnitSystem) = v/conductance(U,S)
F⁻¹L⁻¹T⁻¹Q² [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified

Electrical conductance or current per electricpotential (S, Ω⁻¹, A⋅V⁻¹), unit conversion factor.

julia> conductance(EMU,Metric) # S⋅abS⁻¹
2⁹5⁹ = 1.0×10⁹ [F]/[cm⁻¹s²] EMU -> Metric

julia> conductance(ESU,Metric) # S⋅statS⁻¹
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [F]/[cm] ESU -> Metric

julia> conductance(Metric,SI2019) # S⋅S⁻¹
𝘩⁻¹𝘤⋅𝘦²α⁻¹τ⋅2⁻⁷5⁻⁷ = 0.99999999945(15) [C²]/[C²] Metric -> SI2019
MeasureSystems.resistivityConstant
resistivity : [FL²TQ⁻²], [FL²TQ⁻²], [ML³T⁻¹Q⁻²], [L²T⁻¹], [T]
resistivity(U::UnitSystem,S::UnitSystem) = resistance(U,S)*length(U,S)
resistivity(v::Real,U::UnitSystem,S::UnitSystem) = v/resistivity(U,S)
FL²TQ⁻² [ħ⋅μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified

Electrical resistivity or resistance by length (Ω⋅m), unit conversion factor.

julia> resistance(EMU,Metric) # Ω⋅m⋅abΩ⁻¹⋅cm⁻¹
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [F⁻¹]/[gal] EMU -> Metric

julia> resistance(ESU,Metric) # Ω⋅m⋅statΩ⁻¹⋅cm⁻¹
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [F⁻¹]/[cm⁻¹] ESU -> Metric

julia> resistance(Metric,SI2019) # Ω⋅Ω⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹2⁷5⁷ = 1.00000000055(15) [C⁻²]/[C⁻²] Metric -> SI2019
MeasureSystems.conductivityConstant
conductivity : [F⁻¹L⁻²T⁻¹Q²], [F⁻¹L⁻²T⁻¹Q²], [M⁻¹L⁻³TQ²], [L⁻²T], [T⁻¹]
conductivity(U::UnitSystem,S::UnitSystem) = conductance(U,S)/length(U,S)
conductivity(v::Real,U::UnitSystem,S::UnitSystem) = v/conductivity(U,S)
F⁻¹L⁻²T⁻¹Q² [ħ⁻¹μ₀⁻¹mₑ⋅ϕ⁻¹λ⁻¹αL⁻²g₀⁻¹] Unified

Reciprocal resistivity or electrical conductivity (S⋅m⁻¹), unit conversion factor.

julia> conductivity(EMU,Metric) # S⋅cm⋅abS⁻¹⋅m⁻¹
2¹¹5¹¹ = 1.0×10¹¹ [F⋅m⁻¹]/[cm⁻²s²] EMU -> Metric

julia> conductivity(ESU,Metric) # S⋅cm⋅statS⁻¹⋅m⁼¹
𝘤⁻²2⁷5⁷ = 1.1126500560536183×10⁻¹⁰ [F⋅m⁻¹]/[𝟙] ESU -> Metric

julia> conductivity(Metric,SI2019) # S⋅S⁻¹
𝘩⁻¹𝘤⋅𝘦²α⁻¹τ⋅2⁻⁷5⁻⁷ = 0.99999999945(15) [C²]/[C²] Metric -> SI2019
MeasureSystems.capacitanceConstant
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
capacitance(U::UnitSystem,S::UnitSystem) = charge(U,S)/electricpotential(U,S)
capacitance(v::Real,U::UnitSystem,S::UnitSystem) = v/capacitance(U,S)
F⁻¹L⁻¹Q² [ħ⋅𝘤⁻³μ₀⁻¹mₑ⁻¹ϕ⋅λ⁻¹αL⁻²g₀] Unified

Electrical capactiance or charge per electricpotential (F, C⋅V⁻¹), unit conversion factor.

julia> capacitance(EMU,Metric) # F⋅abF⁻¹
2⁹5⁹ = 1.0×10⁹ [F]/[cm⁻¹s²] EMU -> Metric

julia> capacitance(ESU,Metric) # F⋅cm⁻¹
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [F]/[cm] ESU -> Metric

julia> capactiance(Metric,SI2019) # F⋅F⁻¹
𝘩⁻¹𝘤⋅𝘦²α⁻¹τ⋅2⁻⁷5⁻⁷ = 0.99999999945(15) [C²]/[C²] Metric -> SI2019
MeasureSystems.inductanceConstant
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
inductance(U::UnitSystem,S::UnitSystem) = magneticflux(U,S)/current(U,S)
inductance(v::Real,U::UnitSystem,S::UnitSystem) = v/inductance(U,S)
FLT²Q⁻² [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified

Electro-magneticflux per current or inductance (H, Ω⋅s, Wb⋅A⁻¹), unit conversion factor.

julia> inductance(EMU,Metric) # H⋅abH⁻¹
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [F⁻¹]/[gal] EMU -> Metric

julia> inductance(ESU,Metric) # H⋅statH⁻¹
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [F⁻¹]/[cm⁻¹] ESU -> Metric

julia> inductance(Metric,SI2019) # H⋅H⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹2⁷5⁷ = 1.00000000055(15) [C⁻²]/[C⁻²] Metric -> SI2019
MeasureSystems.reluctanceConstant
reluctance : [F⁻¹L⁻¹T⁻²Q²RC⁻²], [F⁻¹L⁻¹T⁻²Q²], [M⁻¹L⁻²Q²], [L⁻¹], [LT⁻²]
reluctance(U::UnitSystem,S::UnitSystem) = rationalization(U,S)*lorentz(U,S)^2/inductance(U,S)
reluctance(v::Real,U::UnitSystem,S::UnitSystem) = v/reluctance(U,S)
F⁻¹L⁻¹T⁻²Q²RC⁻² [ħ⁻¹𝘤⋅μ₀⁻¹mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Magnetic reluctance or magnetic resistance (H⁻¹, Gb⋅Mx⁻¹), unit conversion factor.

julia> reluctance(EMU,Metric) # abH⋅H⁻¹
τ⁻¹2⁸5⁹ = 7.957747154594767×10⁷ [F]/[cm⁻¹s²] EMU -> Metric

julia> reluctance(ESU,Metric) # statH⋅H⁻¹
𝘤⁻²τ⁻¹2⁴5⁵ = 8.85418781762039×10⁻¹⁴ [F]/[cm] ESU -> Metric

julia> reluctance(Metric,SI2019) # H⋅H⁻¹
𝘩⁻¹𝘤⋅𝘦²α⁻¹τ⋅2⁻⁷5⁻⁷ = 0.99999999945(15) [C²]/[C²] Metric -> SI2019
MeasureSystems.permeanceConstant
permeance : [FLT²Q⁻²R⁻¹C²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
permeance(U::UnitSystem,S::UnitSystem) = 1/reluctance(U,S)
permeance(v::Real,U::UnitSystem,S::UnitSystem) = v/permeance(U,S)
FLT²Q⁻²R⁻¹C² [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅g₀] Unified

Magnetic permeance or magnetic conductance (H, Mx⋅Gb⁻¹), unit conversion factor.

julia> permeance(EMU,Metric) # abH⋅H⁻¹
τ⋅2⁻⁸5⁻⁹ = 1.2566370614359173×10⁻⁸ [F⁻¹]/[gal] EMU -> Metric

julia> permeance(ESU,Metric) # statH⋅H⁻¹
𝘤²τ⋅2⁻⁴5⁻⁵ = 1.129409066758147×10¹³ [F⁻¹]/[cm⁻¹] ESU -> Metric

julia> permeance(Metric,SI2019) # H⋅H⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹2⁷5⁷ = 1.00000000055(15) [C⁻²]/[C⁻²] Metric -> SI2019
MeasureSystems.permittivityMethod
permittivity : [F⁻¹L⁻²Q²R], [F⁻¹L⁻²Q²], [M⁻¹L⁻³T²Q²], [L⁻²T²], [𝟙]
permittivity(U::UnitSystem,S::UnitSystem) = capacitance(U,S)*rationalization(U,S)/length(U,S)
permittivity(v::Real,U::UnitSystem,S::UnitSystem) = v/permittivity(U,S)
F⁻¹L⁻²Q²R [𝘤⁻²μ₀⁻¹αL⁻²] Unified

Absolute permittivity or capacitance per length (F⋅m⁻¹), unit conversion factor.

julia> permittivity(EMU,Metric) # F⋅cm⋅abF⁻¹⋅m⁻¹
τ⁻¹2¹⁰5¹¹ = 7.957747154594768×10⁹ [F⋅m⁻¹]/[cm⁻²s²] EMU -> Metric

julia> permittivity(ESU,Metric) # F⋅m⁼¹
𝘤⁻²τ⁻¹2⁶5⁷ = 8.854187817620389×10⁻¹² [F⋅m⁻¹]/[𝟙] ESU -> Metric

julia> permittivity(Metric,SI2019) # F⋅F⁻¹
𝘩⁻¹𝘤⋅𝘦²α⁻¹τ⋅2⁻⁷5⁻⁷ = 0.99999999945(15) [C²]/[C²] Metric -> SI2019
MeasureSystems.permeabilityMethod
permeability : [FT²Q⁻²R⁻¹C²], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
permeability(U::UnitSystem,S::UnitSystem) = permeability(S)/permeability(U)
permeability(v::Real,U::UnitSystem,S::UnitSystem) = v/permeability(U,S)
FT²Q⁻²R⁻¹C² [μ₀] Unified

Magnetic permeability or inductance per length (H⋅m⁻¹), unit conversion factor.

julia> permeability(EMU,Metric) # H⋅cm⋅abH⁻¹⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [kg⋅m⋅s⁻²C⁻²]/[gal⋅cm⁻¹] EMU -> Metric

julia> permeability(ESU,Metric) # H⋅cm⋅statH⁻¹⋅m⁼¹
𝘤²τ⋅2⁻²5⁻³ = 1.129409066758147×10¹⁵ [kg⋅m⋅s⁻²C⁻²]/[cm⁻²] ESU -> Metric

julia> permeability(Metric,SI2019) # H⋅H⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹2⁷5⁷ = 1.00000000055(15) [C⁻²]/[C⁻²] Metric -> SI2019
MeasureSystems.susceptibilityConstant
susceptibility : [R⁻¹], [𝟙], [𝟙], [𝟙], [𝟙]
susceptibility(U::UnitSystem,S::UnitSystem) = 1/rationalization(U,S)
susceptibility(v::Real,U::UnitSystem,S::UnitSystem) = v/susceptibility(U,S)
R⁻¹ [λ⁻¹] Unified

Magnetic/electric volume susceptibility (dimensionless), unit conversion factor.

julia> susceptibility(EMU,Metric)
τ⋅2 = 12.566370614359172 [𝟙]/[𝟙] EMU -> Metric

julia> susceptibility(ESU,Metric)
τ⋅2 = 12.566370614359172 [𝟙]/[𝟙] ESU -> Metric

julia> susceptibility(Metric,SI2019)
𝟏 = 1.0 [𝟙]/[𝟙] Metric -> SI2019
MeasureSystems.specificsusceptibilityConstant
specificsusceptibility : [M⁻¹L³A⁻¹R⁻¹], [F⁻¹L⁴T⁻²], [M⁻¹L³], [M⁻¹L³], [M⁻¹L³]
specificsusceptibility(U::UnitSystem,S::UnitSystem) = susceptibility(U,S)/density(U,S)
specificsusceptibility(v::Real,U::UnitSystem,S::UnitSystem) = v/specificsusceptibility(U,S)
M⁻¹L³A⁻¹R⁻¹ [ħ³𝘤⁻³mₑ⁻⁴ϕ²λ⁻¹g₀³] Unified

Magnetic/electric mass specific susceptibility (m³⋅kg⁻¹), unit conversion factor.

julia> specificsusceptibility(EMU,Metric) # m³⋅g⋅kg⁻¹⋅cm⁻³
τ⋅2⁻²5⁻³ = 0.012566370614359173 [kg⁻¹m³]/[g⁻¹cm³] EMU -> Metric

julia> specificsusceptibility(ESU,Metric) # m³⋅g⋅kg⁻¹⋅cm⁻³
τ⋅2⁻²5⁻³ = 0.012566370614359173 [kg⁻¹m³]/[g⁻¹cm³] ESU -> Metric

julia> specificsusceptibility(Metric,SI2019) # m³⋅kg⋅kg⁻¹⋅m⁻³
𝟏 = 1.0 [𝟙]/[𝟙] Metric -> SI2019
MeasureSystems.demagnetizingfactorConstant
demagnetizingfactor : [R], [𝟙], [𝟙], [𝟙], [𝟙]
demagnetizingfactor(U::UnitSystem,S::UnitSystem) = 1/susceptibility(U,S)
demagnetizingfactor(v::Real,U::UnitSystem,S::UnitSystem) = v/demagnetizingfactor(U,S)
R [λ] Unified

Quantitiy of demagnetizingfactor (dimensionless), unit conversion factor.

julia> demagnetizingfactor(EMU,Metric)
τ⁻¹2⁻¹ = 0.07957747154594767 [𝟙]/[𝟙] EMU -> Metric

julia> demagnetizingfactor(ESU,Metric)
τ⁻¹2⁻¹ = 0.07957747154594767 [𝟙]/[𝟙] ESU -> Metric

julia> demagnetizingfactor(Metric,SI2019)
𝟏 = 1.0 [𝟙]/[𝟙] Metric -> SI2019
MeasureSystems.vectorpotentialConstant
vectorpotential : [FTQ⁻¹C], [FTQ⁻¹], [MLT⁻¹Q⁻¹], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L⁻¹ᐟ²]
vectorpotential(U::UnitSystem,S::UnitSystem) = magneticflux(U,S)/length(U,S)
vectorpotential(v::Real,U::UnitSystem,S::UnitSystem) = v/vectorpotential(U,S)
FTQ⁻¹C [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²g₀⁻¹] Unified

Magnetic vectorpotential or electromagnetic rigidity (Wb⋅m⁻¹ or T⋅m), unit conversion factor.

julia> vectorpotential(EMU,Metric) # Wb⋅cm⋅Mx⁻¹⋅m⁻¹
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [V⋅m⁻¹]/[g¹ᐟ²cm¹ᐟ²s⁻²] EMU -> Metric

julia> vectorpotential(ESU,Metric) # Wb⋅cm⋅statWb⁻¹⋅m⁻¹
𝘤⋅2⁻⁴5⁻⁴ = 29979.2458 [V⋅m⁻¹]/[g¹ᐟ²cm⁻¹ᐟ²s⁻¹] ESU -> Metric

julia> vectorpotential(Metric,SI2019) # Wb⋅Wb⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.electricpotentialConstant
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
electricpotential(U::UnitSystem,S::UnitSystem) = energy(U,S)/charge(U,S)
electricpotential(v::Real,U::UnitSystem,S::UnitSystem) = v/electricpotential(U,S)
FLQ⁻¹ [ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified

Voltage or electricpotential or energy per charge (V, J⋅C⁻¹), unit conversion factor.

julia> electricpotential(EMU,Metric) # V⋅abV⁻¹
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [V]/[g¹ᐟ²cm³ᐟ²s⁻²] EMU -> Metric

julia> electricpotential(EMU,ESU) # statV⋅abV⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g⁻¹ᐟ²cm⁻³ᐟ²s]/[g⁻¹ᐟ²cm⁻¹ᐟ²] EMU -> ESU

julia> electricpotential(ESU,Metric) # V⋅statV⁻¹
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [V]/[g¹ᐟ²cm¹ᐟ²s⁻¹] ESU -> Metric

julia> electricpotential(Metric,SI2019) # V⋅V⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.magneticpotentialConstant
magneticpotential : [T⁻¹QRC⁻¹], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
magneticpotential(U::UnitSystem,S::UnitSystem) = magneticflux(U,S)*reluctance(U,S)
magneticpotential(v::Real,U::UnitSystem,S::UnitSystem) = v/magneticpotential(U,S)
T⁻¹QRC⁻¹ [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²g₀⁻¹] Unified

Magnetomotive force or magneticpotential (A, Gb), unit conversion factor.

julia> magneticpotential(EMU,Metric) # A⋅Gb⁻¹
τ⁻¹5 = 0.7957747154594768 [C]/[g¹ᐟ²cm¹ᐟ²] EMU -> Metric

julia> magneticpotential(Metric,SI2019) # A⋅A⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.electricfieldConstant
electricfield : [FQ⁻¹], [FQ⁻¹], [MLT⁻²Q⁻¹], [M¹ᐟ²L¹ᐟ²T⁻²], [M¹ᐟ²L⁻¹ᐟ²T⁻¹]
electricfield(U::UnitSystem,S::UnitSystem) = electricpotential(U,S)/length(U,S)
electricfield(v::Real,U::UnitSystem,S::UnitSystem) = v/electricfield(U,S)
FQ⁻¹ [ħ⁻³ᐟ²𝘤⁷ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²αL⋅g₀⁻²] Unified

The electricpotential per length or electricfield (V⋅m⁻¹), unit conversion factor.

julia> electricfield(EMU,Metric) # V⋅cm⋅abV⁻¹⋅m⁻¹
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [V⋅m⁻¹]/[g¹ᐟ²cm¹ᐟ²s⁻²] EMU -> Metric

julia> electricfield(EMU,ESU) # statV⋅abV⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g⁻¹ᐟ²cm⁻³ᐟ²s]/[g⁻¹ᐟ²cm⁻¹ᐟ²] EMU -> ESU

julia> electricfield(ESU,Metric) # V⋅cm⋅statV⁻¹⋅m⁻¹
𝘤⋅2⁻⁴5⁻⁴ = 29979.2458 [V⋅m⁻¹]/[g¹ᐟ²cm⁻¹ᐟ²s⁻¹] ESU -> Metric

julia> electricfield(Metric,SI2019) # V⋅V⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.magneticfieldConstant
magneticfield : [L⁻¹T⁻¹QRC⁻¹], [L⁻¹T⁻¹Q], [L⁻¹T⁻¹Q], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²T⁻²]
magneticfield(U::UnitSystem,S::UnitSystem) = current(U,S)*rationalization(U,S)*lorentz(U,S)/length(U,S)
magneticfield(v::Real,U::UnitSystem,S::UnitSystem) = v/magneticfield(U,S)
L⁻¹T⁻¹QRC⁻¹ [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀⁻¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified

Magnetization or magneticfield or current per length (A⋅m⁻¹), unit conversion factor.

julia> magneticfield(EMU,Metric) # A⋅m⁻¹⋅Oe⁻¹
τ⁻¹2²5³ = 79.57747154594767 [m⁻¹C]/[g¹ᐟ²cm⁻¹ᐟ²] EMU -> Metric

julia> magneticfield(ESU,Metric) # A⋅cm⋅m⁻¹⋅statA⁻¹
𝘤⁻¹τ⁻¹5 = 2.6544187294380726×10⁻⁹ [m⁻¹C]/[g¹ᐟ²cm¹ᐟ²s⁻¹] ESU -> Metric

julia> magneticfield(Metric,SI2019) # A⋅A⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.electricfluxConstant
electricflux : [FL²Q⁻¹], [FL²Q⁻¹], [ML³T⁻²Q⁻¹], [M¹ᐟ²L⁵ᐟ²T⁻²], [M¹ᐟ²L³ᐟ²T⁻¹]
electricflux(U::UnitSystem,S::UnitSystem) = electricpotential(U,S)*length(U,S)
electricflux(v::Real,U::UnitSystem,S::UnitSystem) = v/electricflux(U,S)
FL²Q⁻¹ [ħ¹ᐟ²𝘤³ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²αL] Unified

Amount of electricflux or electricpotential by length (V⋅m), unit conversion factor.

julia> electricflux(EMU,Metric) # V⋅m⋅abV⁻¹⋅cm⁻¹
2⁻¹⁰5⁻¹⁰ = 1.0×10⁻¹⁰ [V⋅m]/[g¹ᐟ²cm⁵ᐟ²s⁻²] EMU -> Metric

julia> electricflux(EMU,ESU) # statV⋅abV⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g⁻¹ᐟ²cm⁻³ᐟ²s]/[g⁻¹ᐟ²cm⁻¹ᐟ²] EMU -> ESU

julia> electricflux(ESU,Metric) # V⋅m⋅statV⁻¹⋅cm⁻¹
𝘤⋅2⁻⁸5⁻⁸ = 2.9979245800000003 [V⋅m]/[g¹ᐟ²cm³ᐟ²s⁻¹] ESU -> Metric

julia> electricflux(Metric,SI2019) # V⋅V⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.magneticfluxMethod
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
magneticflux(U::UnitSystem,S::UnitSystem) = energy(U,S)/lorentz(U,S)/current(U,S)
magneticflux(v::Real,U::UnitSystem,S::UnitSystem) = v/magneticflux(U,S)
FLTQ⁻¹C [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified

Surface magneticflux or energy per current (Wb, J⋅A⁻¹, V⋅s), unit conversion factor.

julia> magneticflux(EMU,Metric) # Wb⋅Mx⁻¹
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [V]/[g¹ᐟ²cm³ᐟ²s⁻²] EMU -> Metric

julia> magneticflux(ESU,Metric) # Wb⋅statWb⁻¹
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [V]/[g¹ᐟ²cm¹ᐟ²s⁻¹] ESU -> Metric

julia> magneticflux(Metric,SI2019) # Wb⋅Wb⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.electricdisplacementConstant
electricdisplacement : [L⁻²QR], [L⁻²Q], [L⁻²Q], [M¹ᐟ²L⁻³ᐟ²], [M¹ᐟ²L⁻¹ᐟ²T⁻¹]
electricdisplacement(U::UnitSystem,S::UnitSystem) = charge(U,S)*rationalization(U,S)/area(U,S)
electricdisplacement(v::Real,U::UnitSystem,S::UnitSystem) = v/electricdisplacement(U,S)
L⁻²QR [ħ⁻³ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²αL⁻¹g₀⁻²] Unified

Electric field displacement or surface electricdisplacement (C⋅m⁻²), unit conversion factor.

julia> electricdisplacement(EMU,Metric) # C⋅cm²⋅abC⁻¹⋅m⁻²
τ⁻¹2⁴5⁵ = 7957.747154594767 [m⁻²C]/[g¹ᐟ²cm⁻³ᐟ²] EMU -> Metric

julia> electricdisplacement(ESU,Metric) # C⋅cm²⋅statC⁻¹⋅m⁼²
𝘤⁻¹τ⁻¹2²5³ = 2.6544187294380724×10⁻⁷ [m⁻²C]/[g¹ᐟ²cm⁻¹ᐟ²s⁻¹] ESU -> Metric

julia> electricdisplacement(Metric,SI2019) # C⋅C⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.magneticfluxdensityConstant
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
magneticfluxdensity(U::UnitSystem,S::UnitSystem) = magneticflux(U,S)/area(U,S)
magneticfluxdensity(v::Real,U::UnitSystem,S::UnitSystem) = v/magneticfluxdensity(U,S)
FL⁻¹TQ⁻¹C [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified

Magnetic induction or magneticmoment per volume (T or Wb⋅m⁻²), unit conversion factor.

julia> magneticfluxdensity(EMU,Metric) # T⋅G⁻¹
2⁻⁴5⁻⁴ = 0.0001 [kg⋅s⁻²C⁻¹]/[g¹ᐟ²cm⁻¹ᐟ²s⁻²] EMU -> Metric

julia> magneticfluxdensity(EMU,ESU) # statT⋅G⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g⁻¹ᐟ²cm⁻³ᐟ²s]/[g⁻¹ᐟ²cm⁻¹ᐟ²] EMU -> ESU

julia> magneticfluxdensity(Metric,SI2019) # T⋅T⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.electricdipolemomentConstant
electricdipolemoment : [LQ], [LQ], [LQ], [M¹ᐟ²L³ᐟ²], [M¹ᐟ²L⁵ᐟ²T⁻¹]
electricdipolemoment(U::UnitSystem,S::UnitSystem) = charge(U,S)*length(U,S)
electricdipolemoment(v::Real,U::UnitSystem,S::UnitSystem) = v/electricdipolemoment(U,S)
LQ [ħ³ᐟ²𝘤⁻³ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ³ᐟ²λ⁻¹ᐟ²αL⁻¹g₀] Unified

Electric dipole moment or electricdipolemoment (C⋅m), unit conversion factor.

julia> electricdipolemoment(EMU,Metric) # C⋅m⋅abC⁻¹⋅cm⁻¹
2⁻¹5⁻¹ = 0.1 [m⋅C]/[g¹ᐟ²cm³ᐟ²] EMU -> Metric

julia> electricdipolemoment(ESU,Metric) # C⋅m⋅statC⁻¹⋅cm⁼¹
𝘤⁻¹2⁻³5⁻³ = 3.3356409519815203×10⁻¹² [m⋅C]/[g¹ᐟ²cm⁵ᐟ²s⁻¹] ESU -> Metric

julia> electricdipolemoment(Metric,SI2019) # C⋅C⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.magneticdipolemomentConstant
magneticdipolemoment : [L²T⁻¹QA⁻¹C⁻¹], [L²T⁻¹Q], [L²T⁻¹Q], [M¹ᐟ²L⁵ᐟ²T⁻¹], [M¹ᐟ²L⁷ᐟ²T⁻²]
magneticdipolemoment(U::UnitSystem,S::UnitSystem) = current(U,S)*lorentz(U,S)/area(U,S)/gravity(U,S)/angle(U,S)
magneticdipolemoment(v::Real,U::UnitSystem,S::UnitSystem) = v/magneticdipolemoment(U,S)
L²T⁻¹QA⁻¹C⁻¹ [ħ³ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²g₀] Unified

Magnetic dipole moment or magneticdipolemoment (J⋅T⁻¹, A⋅m²), unit conversion factor.

julia> magneticdipolemoment(EMU,Metric) # J⋅G⋅T⁻¹⋅erg⁻¹
2⁻³5⁻³ = 0.001 [m²C]/[g¹ᐟ²cm⁵ᐟ²] EMU -> Metric

julia> magneticdipolemoment(ESU,Metric) # J⋅statT⋅T⁻¹⋅erg⁼¹
𝘤⁻¹2⁻⁵5⁻⁵ = 3.335640951981521×10⁻¹⁴ [m²C]/[g¹ᐟ²cm⁷ᐟ²s⁻¹] ESU -> Metric

julia> magneticdipolemoment(Metric,SI2019) # A⋅A⁻¹⋅
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.electricpolarizabilityConstant
electricpolarizability : [F⁻¹LQ²], [F⁻¹LQ²], [M⁻¹T²Q²], [LT²], [L³]
electricpolarizability(U::UnitSystem,S::UnitSystem) = electricdipolemoment(U,S)/electricfield(U,S)
electricpolarizability(v::Real,U::UnitSystem,S::UnitSystem) = v/electricpolarizability(U,S)
F⁻¹LQ² [ħ³𝘤⁻⁵μ₀⁻¹mₑ⁻³ϕ³λ⁻¹αL⁻²g₀³] Unified

Polarizability or electricdipolemoment per electricfield (C⋅m²⋅V⁻¹), unit conversion factor.

julia> electricpolarizability(EMU,Metric) # C⋅m²⋅abV⋅abC⁻¹⋅cm⁻²⋅V⁻¹
2⁵5⁵ = 100000.0 [kg⁻¹s²C²]/[cm⋅s²] EMU -> Metric

julia> electricpolarizability(ESU,Metric) # C⋅m²⋅statV⋅statC⁻¹⋅cm⁼²⋅V⁻¹
𝘤⁻²2⋅5 = 1.1126500560536184×10⁻¹⁶ [kg⁻¹s²C²]/[mL] ESU -> Metric

julia> electricpolarizability(Metric,Gauss) # D⋅cm²⋅V⁻¹⋅C⁻¹⋅m⁻²⋅abV⁻¹
𝘤²2⁻¹5⁻¹ = 8.987551787368176×10¹⁵ [mL]/[kg⁻¹s²C²] Metric -> Gauss

julia> electricpolarizability(Metric,SI2019) # C⋅V⋅C⁻¹⋅V⁻¹
𝘩⁻¹𝘤⋅𝘦²α⁻¹τ⋅2⁻⁷5⁻⁷ = 0.99999999945(15) [C²]/[C²] Metric -> SI2019
MeasureSystems.magneticpolarizabilityConstant
magneticpolarizability : [L³A⁻¹R⁻¹], [L³], [L³], [L³], [L³]
magneticpolarizability(U::UnitSystem,S::UnitSystem) = magneticdipolemoment(U,S)/magneticfield(U,S)
magneticpolarizability(v::Real,U::UnitSystem,S::UnitSystem) = v/magneticpolarizability(U,S)
L³A⁻¹R⁻¹ [ħ³𝘤⁻³mₑ⁻³ϕ²λ⁻¹g₀³] Unified

Polarizability or magneticdipolemoment per magneticfield (m³), unit conversion factor.

julia> electricpolarizability(EMU,Metric) # m³⋅cm⁻³
2⁵5⁵ = 100000.0 [kg⁻¹s²C²]/[cm⋅s²] EMU -> Metric

julia> electricpolarizability(ESU,Metric) # m³⋅cm⁼³
𝘤⁻²2⋅5 = 1.1126500560536184×10⁻¹⁶ [kg⁻¹s²C²]/[mL] ESU -> Metric

julia> electricpolarizability(Metric,Gauss) # cm³⋅m⁻³
𝘤²2⁻¹5⁻¹ = 8.987551787368176×10¹⁵ [mL]/[kg⁻¹s²C²] Metric -> Gauss

julia> electricpolarizability(Metric,SI2019)
𝘩⁻¹𝘤⋅𝘦²α⁻¹τ⋅2⁻⁷5⁻⁷ = 0.99999999945(15) [C²]/[C²] Metric -> SI2019
MeasureSystems.magneticmomentConstant
magneticmoment : [FL²TQ⁻¹C], [FL²TQ⁻¹], [ML³T⁻¹Q⁻¹], [M¹ᐟ²L⁵ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²]
magneticmoment(U::UnitSystem,S::UnitSystem) = magneticflux(U,S)*length(U,S)
magneticmoment(v::Real,U::UnitSystem,S::UnitSystem) = v/magneticmoment(U,S)
FL²TQ⁻¹C [ħ³ᐟ²𝘤⁻¹ᐟ²μ₀¹ᐟ²mₑ⁻¹ϕ³ᐟ²λ¹ᐟ²g₀] Unified

Amount of magneticmoment or magneticflux by length (Wb⋅m or T⋅m³), unit conversion factor.

julia> magneticmoment(EMU,Metric) # Wb⋅m⋅Mx⁻¹⋅cm⁻¹
2⁻¹⁰5⁻¹⁰ = 1.0×10⁻¹⁰ [V⋅m]/[g¹ᐟ²cm⁵ᐟ²s⁻²] EMU -> Metric

julia> magneticmoment(ESU,Metric) # Wb⋅m⋅statWb⁻¹⋅cm⁻¹
𝘤⋅2⁻⁸5⁻⁸ = 2.9979245800000003 [V⋅m]/[g¹ᐟ²cm³ᐟ²s⁻¹] ESU -> Metric

julia> magneticmoment(Metric,SI2019) # Wb⋅Wb⁻¹
𝘩¹ᐟ²𝘤⁻¹ᐟ²𝘦⁻¹α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.000000000273(77) [C⁻¹]/[C⁻¹] Metric -> SI2019
MeasureSystems.specificmagnetizationConstant
specificmagnetization : [F⁻¹ML⁻²T⁻¹QC⁻¹], [L⁻³TQ], [L⁻³TQ], [M¹ᐟ²L⁻⁵ᐟ²T], [M¹ᐟ²L⁻³ᐟ²]
specificmagnetization(U::UnitSystem,S::UnitSystem) = magneticmoment(U,S)/mass(U,S)
specificmagnetization(v::Real,U::UnitSystem,S::UnitSystem) = v/specificmagnetization(U,S)
F⁻¹ML⁻²T⁻¹QC⁻¹ [ħ⁻³ᐟ²𝘤¹ᐟ²μ₀⁻¹ᐟ²mₑ²ϕ⁻³ᐟ²λ⁻¹ᐟ²g₀⁻¹] Unified

Amount of magneticmoment per mass (Wb⋅m⋅kg⁻¹), unit conversion factor.

julia> specificmagnetization(EMU,Metric) # Wb⋅m⋅g⋅Mx⁻¹⋅cm⁻¹⋅kg⁻¹
2⁷5⁷ = 1.0×10⁷ [m⁻³s²C]/[g¹ᐟ²cm⁻⁵ᐟ²s²] EMU -> Metric

julia> specificmagnetization(ESU,Metric) # Wb⋅m⋅g⋅statWb⁻¹⋅cm⁻¹⋅kg⁻¹
𝘤⁻¹2⁵5⁵ = 0.00033356409519815205 [m⁻³s²C]/[g¹ᐟ²cm⁻³ᐟ²s] ESU -> Metric

julia> specificmagnetization(Metric,SI2019) # Wb⋅Wb⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019
MeasureSystems.polestrengthConstant
polestrength : [LT⁻¹QA⁻¹C⁻¹], [LT⁻¹Q], [LT⁻¹Q], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L⁵ᐟ²T⁻²]
polestrength(U::UnitSystem,S::UnitSystem) = magneticdipolemoment(U,S)/length(U,S)
polestrength(v::Real,U::UnitSystem,S::UnitSystem) = v/polestrength(U,S)
LT⁻¹QA⁻¹C⁻¹ [ħ¹ᐟ²𝘤¹ᐟ²μ₀⁻¹ᐟ²ϕ⁻¹ᐟ²λ⁻¹ᐟ²] Unified

Magnetic polestrength is analogous to charge (A⋅m), unit conversion factor.

julia> polestrength(EMU,Metric) # A⋅m⋅pole⁻¹
2⁻¹5⁻¹ = 0.1 [m⋅C]/[g¹ᐟ²cm³ᐟ²] EMU -> Metric

julia> polestrength(Metric,SI2019) # A⋅A⁻¹⋅
𝘩⁻¹ᐟ²𝘤¹ᐟ²𝘦⋅α⁻¹ᐟ²τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 0.999999999727(77) [C]/[C] Metric -> SI2019

Thermodynamic Units

MeasureSystems.temperatureConstant
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
temperature(U::UnitSystem,S::UnitSystem) = mass(U,S)*speed(U,S)^2/entropy(U,S)
temperature(v::Real,U::UnitSystem,S::UnitSystem) = v/temperature(U,S)
Θ [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

Measurement scale for thermodynamic energy or temperature (K), unit conversion factor.

julia> temperature(Metric,SI2019) # K⋅K⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [K]/[K] Metric -> SI2019

julia> temperature(English,SI2019) # K⋅°R⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴ = 0.55555555536(17) [K]/[°R] English -> SI2019

julia> temperature(English,Metric) # K⋅°R⁻¹
3⁻²5 = 0.5555555555555556 [K]/[°R] English -> Metric

julia> temperature(PlanckGauss,Metric) # K⋅TP⁻¹
kB⁻¹NA⁻¹𝘩⁻¹𝘤³R∞⁻¹α²μₑᵤ⋅mP⋅2⁻⁴5⁻³ = 1.416784(16) × 10³² [K]/[mP] PlanckGauss -> Metric
MeasureSystems.entropyConstant
entropy : [FLΘ⁻¹], [FLΘ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹]
entropy(U::UnitSystem,S::UnitSystem) = energy(U,S)/temperature(U,S)
entropy(v::Real,U::UnitSystem,S::UnitSystem) = v/entropy(U,S)
FLΘ⁻¹ [kB] Unified

Heat capacity or energy per temperature or entropy (J⋅K⁻¹), unit conversion factor.

julia> entropy(Metric,SI2019) # K⋅K⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 1.00000000034(31) [K⁻¹]/[K⁻¹] Metric -> SI2019

julia> entropy(CGS,Metric) # J⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> entropy(English,SI2019) # J⋅°R⋅K⁻¹⋅ft⁻¹⋅lb⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅g₀⋅ft⋅lb⋅2⁻⁴3²5⁻⁴ = 2.44047230784(75) [J⋅K⁻¹]/[lbf⋅ft⋅°R⁻¹] English -> SI2019

julia> entropy(Survey,English) # ftUS²⋅°R⋅°ft⁻²⋅°R⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.specificentropyConstant
specificentropy : [FM⁻¹LΘ⁻¹], [L²T⁻²Θ⁻¹], [L²T⁻²Θ⁻¹], [L²T⁻²Θ⁻¹], [L²T⁻²Θ⁻¹]
specificentropy(U::UnitSystem,S::UnitSystem) = specificenergy(U,S)/temperature(U,S)
specificentropy(v::Real,U::UnitSystem,S::UnitSystem) = v/specificentropy(U,S)
FM⁻¹LΘ⁻¹ [kB⋅mₑ⁻¹] Unified

Specific heat capacity or specificentropy (J⋅K⁻¹⋅kg⁻¹), unit conversion factor.

julia> specificentropy(Metric,SI2019) # m²⋅K⋅K⁻¹⋅cm⁻²
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 1.00000000034(31) [K⁻¹]/[K⁻¹] Metric -> SI2019

julia> specificentropy(CGS,Metric) # m²⋅cm⁻²
2⁻⁴5⁻⁴ = 0.0001 [J⋅kg⁻¹]/[erg⋅g⁻¹] Gauss -> Metric

julia> specificentropy(English,Metric) # m²⋅°R⋅K⁻¹⋅ft⁻²
g₀⋅ft⋅3²5⁻¹ = 5.380320456 [J⋅K⁻¹kg⁻¹]/[lbf⋅lbm⁻¹ft⋅°R⁻¹] English -> Metric

julia> specificentropy(Survey,English) # ft²⋅°R⋅ftUS⁻²⋅°R⁻¹
ft⁻¹ftUS = 1.0000020000039997 [ft]/[ft] Survey -> English
MeasureSystems.volumeheatcapacityConstant
volumeheatcapacity : [FL⁻²Θ⁻¹], [FL⁻²Θ⁻¹], [ML⁻¹T⁻²Θ⁻¹], [ML⁻¹T⁻²Θ⁻¹], [ML⁻¹T⁻²Θ⁻¹]
volumeheatcapacity(U::UnitSystem,S::UnitSystem) = entropy(U,S)/volume(U,S)
volumeheatcapacity(v::Real,U::UnitSystem,S::UnitSystem) = v/volumeheatcapacity(U,S)
FL⁻²Θ⁻¹ [kB⋅ħ⁻³𝘤³mₑ³ϕ⁻³g₀⁻³] Unified

The entropy per volume or volumeheatcapacity (J⋅K⁻¹⋅m⁻³), unit conversion factor.

julia> volumeheatcapacity(Metric,SI2019) # K⋅K⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 1.00000000034(31) [K⁻¹]/[K⁻¹] Metric -> SI2019

julia> volumeheatcapacity(CGS,Metric) # J⋅cm³⋅erg⁻¹⋅m⁻³
2⁻¹5⁻¹ = 0.1 [Pa]/[Ba] Gauss -> Metric

julia> volumeheatcapacity(English,SI2019) # J⋅ft²⋅°R⋅K⁻¹⋅lb⁻¹⋅m⁻³
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅g₀⋅ft⁻²lb⋅2⁻⁴3²5⁻⁴ = 86.184466194(27) [kg⋅m⁻¹s⁻²K⁻¹]/[lbf⋅ft⁻²°R⁻¹] English -> SI2019

julia> volumeheatcapacity(Survey,English) # ftUS⁵°R⋅°ft⁻⁵⋅°R⁻¹
ft²ftUS⁻² = 0.9999960000040004 [ft⁻²]/[ft⁻²] Survey -> English
MeasureSystems.thermalconductivityConstant
thermalconductivity : [FT⁻¹Θ⁻¹], [FT⁻¹Θ⁻¹], [MLT⁻³Θ⁻¹], [MLT⁻³Θ⁻¹], [MLT⁻³Θ⁻¹]
thermalconductivity(U::UnitSystem,S::UnitSystem) = force(U,S)/time(U,S)/temperature(U,S)
thermalconductivity(v::Real,U::UnitSystem,S::UnitSystem) = v/thermalconductivity(U,S)
FT⁻¹Θ⁻¹ [kB⋅ħ⁻²𝘤³mₑ²ϕ⁻²g₀⁻²] Unified

Heat conductivity or thermalconductivity (W⋅m⁻¹⋅K⁻¹), unit conversion factor.

julia> thermalconductivity(Metric,SI2019) # K⋅K⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 1.00000000034(31) [K⁻¹]/[K⁻¹] Metric -> SI2019

julia> thermalconductivity(CGS,Metric) # N⋅dyn⁻¹
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [N]/[dyn] Gauss -> Metric

julia> thermalconductivity(English,Metric) # N⋅°R⋅K⁻¹⋅ft⁻¹⋅lb⁻¹
g₀⋅lb⋅3²5⁻¹ = 8.0067989074689 [kg⋅m⋅s⁻²K⁻¹]/[lbf⋅°R⁻¹] English -> Metric
MeasureSystems.thermalconductanceConstant
thermalconductance : [FLT⁻¹Θ⁻¹], [FLT⁻¹Θ⁻¹], [ML²T⁻³Θ⁻¹], [ML²T⁻³Θ⁻¹], [ML²T⁻³Θ⁻¹]
thermalconductance(U::UnitSystem,S::UnitSystem) = thermalconductivity(U,S)*length(U,S)
thermalconductance(v::Real,U::UnitSystem,S::UnitSystem) = v/thermalconductance(U,S)
FLT⁻¹Θ⁻¹ [kB⋅ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Reciprocal of thermalresistance (W⋅K⁻¹), unit conversion factor.

julia> thermalconductance(Metric,SI2019) # K⋅K⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 1.00000000034(31) [K⁻¹]/[K⁻¹] Metric -> SI2019

julia> thermalconductance(CGS,Metric) # W⋅s⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> thermalconductance(English,Metric) # J⋅°R⋅K⁻¹⋅ft⁻¹⋅lb⁻¹
g₀⋅ft⋅lb⋅3²5⁻¹ = 2.440472306996521 [J⋅K⁻¹]/[lbf⋅ft⋅°R⁻¹] English -> Metric
MeasureSystems.thermalresistivityConstant
thermalresistivity : [F⁻¹TΘ], [F⁻¹TΘ], [M⁻¹L⁻¹T³Θ], [M⁻¹L⁻¹T³Θ], [M⁻¹L⁻¹T³Θ]
thermalresistivity(U::UnitSystem,S::UnitSystem) = 1/thermalconductivity(U,S)
thermalresistivity(v::Real,U::UnitSystem,S::UnitSystem) = v/thermalresistivity(U,S)
F⁻¹TΘ [kB⁻¹ħ²𝘤⁻³mₑ⁻²ϕ²g₀²] Unified

Resistance to heat flow or thermalresistance (K⋅W⁻¹), unit conversion factor.

julia> thermalresistance(Metric,SI2019) # K⋅K⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [K]/[K] Metric -> SI2019

julia> thermalresistance(CGS,Metric) # erg⋅s⁻¹⋅W⁻¹
2⁷5⁷ = 1.0×10⁷ [J⁻¹]/[erg⁻¹] Gauss -> Metric

julia> thermalresistance(English,Metric) # ft⋅lb⋅K⋅°R⁻¹⋅J⁻¹
g₀⁻¹ft⁻¹lb⁻¹3⁻²5 = 0.40975674959848074 [kg⁻¹m⁻²s²K]/[lbf⁻¹ft⁻¹°R] English -> Metric
MeasureSystems.thermalresistanceConstant
thermalresistance : [F⁻¹L⁻¹TΘ], [F⁻¹L⁻¹TΘ], [M⁻¹L⁻²T³Θ], [M⁻¹L⁻²T³Θ], [M⁻¹L⁻²T³Θ]
thermalresistance(U::UnitSystem,S::UnitSystem) = 1/thermalconductivity(U,S)/length(U,S)
thermalresistance(v::Real,U::UnitSystem,S::UnitSystem) = v/thermalresistance(U,S)
F⁻¹L⁻¹TΘ [kB⁻¹ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified

Resistance to heat flow or thermalresistance (K⋅W⁻¹), unit conversion factor.

julia> thermalresistance(Metric,SI2019) # K⋅K⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [K]/[K] Metric -> SI2019

julia> thermalresistance(CGS,Metric) # erg⋅s⁻¹⋅W⁻¹
2⁷5⁷ = 1.0×10⁷ [J⁻¹]/[erg⁻¹] Gauss -> Metric

julia> thermalresistance(English,Metric) # ft⋅lb⋅K⋅°R⁻¹⋅J⁻¹
g₀⁻¹ft⁻¹lb⁻¹3⁻²5 = 0.40975674959848074 [kg⁻¹m⁻²s²K]/[lbf⁻¹ft⁻¹°R] English -> Metric
MeasureSystems.thermalexpansionConstant
thermalexpansion : [Θ⁻¹], [Θ⁻¹], [Θ⁻¹], [Θ⁻¹], [Θ⁻¹]
thermalexpansion(U::UnitSystem,S::UnitSystem) = 1/temperature(U,S)
thermalexpansion(v::Real,U::UnitSystem,S::UnitSystem) = v/thermalexpansion(U,S)
Θ⁻¹ [kB⋅𝘤⁻²mₑ⁻¹g₀] Unified

Measurement scale for coefficient of thermalexpansion (K⁻¹), unit conversion factor.

julia> thermalexpansion(Metric,SI2019) # K⋅K⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 1.00000000034(31) [K⁻¹]/[K⁻¹] Metric -> SI2019

julia> thermalexpansion(English,SI2019) # °R⋅K⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴3²5⁻⁴ = 1.80000000062(55) [K⁻¹]/[°R⁻¹] English -> SI2019

julia> thermalexpansion(English,Metric) # °R⋅K⁻¹
3²5⁻¹ = 1.8 [K⁻¹]/[°R⁻¹] English -> Metric
MeasureSystems.lapserateConstant
lapserate : [L⁻¹Θ], [L⁻¹Θ], [L⁻¹Θ], [L⁻¹Θ], [L⁻¹Θ]
lapserate(U::UnitSystem,S::UnitSystem) = temperature(U,S)/length(U,S)
lapserate(v::Real,U::UnitSystem,S::UnitSystem) = v/lapserate(U,S)
L⁻¹Θ [kB⁻¹ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified

Temperature gradient over length or lapserate (K⋅m⁻¹), unit conversion factor.

julia> lapserate(Metric,SI2019) # K⋅K⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [K]/[K] Metric -> SI2019

julia> lapserate(English,SI2019) # K⋅ft⋅°R⁻¹⋅m⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft⁻¹2⁴3⁻²5⁴ = 1.82268882994(56) [m⁻¹K]/[ft⁻¹°R] English -> SI2019

julia> lapserate(English,Metric) # K⋅ft⋅°R⁻¹⋅m⁻¹
ft⁻¹3⁻²5 = 1.8226888305628461 [m⁻¹K]/[ft⁻¹°R] English -> Metric

julia> lapserate(EnglishUS,English) # °R⋅ftUS⋅°R⁻¹⋅ft⁻¹
ft⋅ftUS⁻¹ = 0.9999980000000002 [ft⁻¹]/[ft⁻¹] Survey -> English

Molar Units

MeasureSystems.molarmassMethod
molarmass : [MN⁻¹], [FL⁻¹T²N⁻¹], [MN⁻¹], [MN⁻¹], [MN⁻¹]
molarmass(U::UnitSystem,S::UnitSystem) = molarmass(S)/molarmass(U)
molarmass(v::Real,U::UnitSystem,S::UnitSystem) = v/molarmass(U,S)
MN⁻¹ [Mᵤ] Unified

Molar mass or mass per mole (kg⋅mol⁻¹), unit conversion factor.

julia> molarmass(CGS,Metric) # kg⋅g⁻¹
2⁻³5⁻³ = 0.001 [kg]/[g] Gauss -> Metric

julia> molarmass(Metric,SI2019) # mol⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [mol⁻¹]/[mol⁻¹] Metric -> SI2019
MeasureSystems.molalityConstant
molality : [M⁻¹N], [F⁻¹LT⁻²N], [M⁻¹N], [M⁻¹N], [M⁻¹N]
molality(U::UnitSystem,S::UnitSystem) = molarmass(U)/molarmass(S)
molality(v::Real,U::UnitSystem,S::UnitSystem) = v/molality(U,S)
M⁻¹N [Mᵤ⁻¹] Unified

Molality or mole per mass (mol⋅kg⁻¹), unit conversion factor.

julia> molality(CGS,Metric) # kg⋅g⁻¹
2³5³ = 1000.0 [kg⁻¹]/[g⁻¹] Gauss -> Metric

julia> molality(Metric,SI2019) # mol⋅mol⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 1.00000000034(31) [mol]/[mol] Metric -> SI2019
MeasureSystems.molaramountConstant
molaramount : [N], [N], [N], [N], [N]
molaramount(U::UnitSystem,S::UnitSystem) = mass(U,S)*molality(U,S)
molaramount(v::Real,U::UnitSystem,S::UnitSystem) = v/molaramount(U,S)
N [mₑ⋅Mᵤ⁻¹] Unified

Amount of molecular substance or molaramount (mol), unit conversion factor.

julia> molaramount(SI2019,Metric) # mol⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [mol]/[mol] SI2019 -> Metric

julia> molaramount(British,SI2019) # mol⋅slug-mol⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅lb⋅2⁻¹ = 453.59237016(14) [mol]/[lb-mol] English -> SI2019

julia> molaramount(English,SI2019) # mol⋅lb-mol⁻¹
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅lb⋅2⁻¹ = 453.59237016(14) [mol]/[lb-mol] English -> SI2019
MeasureSystems.molarityConstant
molarity : [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N]
molarity(U::UnitSystem,S::UnitSystem) = molaramount(U,S)/volume(U,S)
molarity(v::Real,U::UnitSystem,S::UnitSystem) = v/molarity(U,S)
L⁻³N [ħ⁻³𝘤³mₑ⁴Mᵤ⁻¹ϕ⁻³g₀⁻³] Unified

Molar concentration or molaramount per volume (mol⋅m⁻³), unit conversion factor.

julia> molarity(CGS,Metric) # cm³⋅m⁻³
2⁶5⁶ = 1.0×10⁶ [m⁻³]/[mL⁻¹] Gauss -> Metric

julia> molarity(English,SI2019) # ft³⋅m⁻³
NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅ft⁻³lb⋅2⁻¹ = 16018.4633795(49) [m⁻³mol]/[ft⁻³lb-mol] English -> SI2019
MeasureSystems.molarvolumeConstant
molarvolume : [L³N⁻¹], [L³N⁻¹], [L³N⁻¹], [L³N⁻¹], [L³N⁻¹]
molarvolume(U::UnitSystem,S::UnitSystem) = volume(U,S)/molaramount(U,S)
molarvolume(v::Real,U::UnitSystem,S::UnitSystem) = v/molarvolume(U,S)
L³N⁻¹ [ħ³𝘤⁻³mₑ⁻⁴Mᵤ⋅ϕ³g₀³] Unified

Occupied volume per molaramount or molarvolume (m³⋅mol⁻¹), unit conversion factor.

julia> molarvolume(CGS,Metric) # m³⋅cm⁻³
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [m³]/[mL] Gauss -> Metric

julia> molarvolume(English,SI2019) # m³⋅ft⁻³
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft³lb⁻¹2 = 6.2427960555(19) × 10⁻⁵ [m³mol⁻¹]/[ft³lb-mol⁻¹] English -> SI2019
MeasureSystems.molarentropyConstant
molarentropy : [FLΘ⁻¹N⁻¹], [FLΘ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹]
molarentropy(U::UnitSystem,S::UnitSystem) = entropy(U,S)/molaramount(U,S)
molarentropy(v::Real,U::UnitSystem,S::UnitSystem) = v/molarentropy(U,S)
FLΘ⁻¹N⁻¹ [kB⋅mₑ⁻¹Mᵤ] Unified

Molar heat capacity or entropy per molaramount (J⋅K⁻¹⋅mol⁻¹), unit conversion factor.

julia> molarentropy(CGS,Metric) # J⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> molarentropy(English,SI2019) # J⋅°R⋅lb-mol⋅ft⁻¹⋅lb⁻¹⋅K⁻¹⋅mol⁻¹
g₀⋅ft⋅2⁻³3²5⁻⁴ = 0.005380320456000001 [J⋅K⁻¹mol⁻¹]/[lbf⋅ft⋅°R⁻¹lb-mol⁻¹] English -> SI2019
MeasureSystems.molarenergyConstant
molarenergy : [FLN⁻¹], [FLN⁻¹], [ML²T⁻²N⁻¹], [ML²T⁻²N⁻¹], [ML²T⁻²N⁻¹]
molarenergy(U::UnitSystem,S::UnitSystem) = energy(U,S)/molaramount(U,S)
molarenergy(v::Real,U::UnitSystem,S::UnitSystem) = v/molarenergy(U,S)
FLN⁻¹ [𝘤²Mᵤ⋅g₀⁻¹] Unified

Gibbs free energy per mole or molarenergy (J⋅mol⁻¹), unit conversion factor.

julia> molarenergy(CGS,Metric) # J⋅erg⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J]/[erg] Gauss -> Metric

julia> molarenergy(English,SI2019) # J⋅slug-mol⋅ft⁻¹⋅lb⁻¹⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⋅ft⋅2 = 0.00298906691897(92) [J⋅mol⁻¹]/[lbf⋅ft⋅lb-mol⁻¹] English -> SI2019
MeasureSystems.molarconductivityConstant
molarconductivity : [F⁻¹T⁻¹Q²N⁻¹], [F⁻¹T⁻¹Q²N⁻¹], [M⁻¹L⁻¹TQ²N⁻¹], [TN⁻¹], [L²T⁻¹N⁻¹]
molarconductivity(U::UnitSystem,S::UnitSystem) = conductivity(U,S)*area(U,S)/molaramount(U,S)
molarconductivity(v::Real,U::UnitSystem,S::UnitSystem) = v/molarconductivity(U,S)
F⁻¹T⁻¹Q²N⁻¹ [ħ⋅𝘤⁻²μ₀⁻¹mₑ⁻²Mᵤ⋅ϕ⋅λ⁻¹αL⁻²g₀] Unified

Conductivity per molarvolume or molarconductivity (S⋅m²⋅mol⁻¹), unit conversion factor.

julia> molarconductivity(EMU,Metric) # S⋅m²⋅abΩ⋅cm⁻²
2⁷5⁷ = 1.0×10⁷ [kg⁻¹m⁻¹s²C²]/[s²] EMU -> Metric

julia> molarconductivity(ESU,Metric) # S⋅m²⋅statΩ⋅cm⁻²
𝘤⁻²2³5³ = 1.1126500560536184×10⁻¹⁴ [kg⁻¹m⁻¹s²C²]/[cm²] ESU -> Metric
MeasureSystems.molarsusceptibilityConstant
molarsusceptibility : [L³N⁻¹A⁻¹R⁻¹], [L³N⁻¹], [L³N⁻¹], [L³N⁻¹], [L³N⁻¹]
molarsusceptibility(U::UnitSystem,S::UnitSystem) = specificsusceptibility(U,S)*molarmass(U,S)
molarsusceptibility(v::Real,U::UnitSystem,S::UnitSystem) = v/molarsusceptibility(U,S)
L³N⁻¹A⁻¹R⁻¹ [ħ³𝘤⁻³mₑ⁻⁴Mᵤ⋅ϕ²λ⁻¹g₀³] Unified

Magnetic/electric molar mass susceptibility (m³⋅mol⁻¹), unit conversion factor.

julia> molarsusceptibility(CGS,Metric) # m³⋅cm⁻³
τ⋅2⁻⁵5⁻⁶ = 1.2566370614359172×10⁻⁵ [m³]/[mL] Gauss -> Metric

julia> molarsusceptibility(Metric,SI2019) # m³⋅mol⋅mol⁻¹⋅cm⁻³
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [mol⁻¹]/[mol⁻¹] Metric -> SI2019
MeasureSystems.catalysisConstant
catalysis : [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N]
catalysis(U::UnitSystem,S::UnitSystem) = molaramount(U,S)/time(U,S)
catalysis(v::Real,U::UnitSystem,S::UnitSystem) = v/catalysis(U,S)
T⁻¹N [ħ⁻¹𝘤²mₑ²Mᵤ⁻¹ϕ⁻¹g₀⁻¹] Unified

Catalytic activity or molaramount per time (kat, mol⋅s⁻¹), unit conversion factor.

julia> catalysis(English,Metric) # kat⋅s⋅lb-mol⁻¹
lb⋅2³5³ = 453.59237 [mol]/[lb-mol] English -> Metric
MeasureSystems.specificityConstant
specificity : [L³T⁻¹N⁻¹], [L³T⁻¹N⁻¹], [L³T⁻¹N⁻¹], [L³T⁻¹N⁻¹], [L³T⁻¹N⁻¹]
specificity(U::UnitSystem,S::UnitSystem) = volume(U,S)/molaramount(U,S)/time(U,S)
specificity(v::Real,U::UnitSystem,S::UnitSystem) = v/specificity(U,S)
L³T⁻¹N⁻¹ [ħ²𝘤⁻¹mₑ⁻³Mᵤ⋅ϕ²g₀²] Unified

Catalytic efficiency or volume per mole per time (m³⋅mol⁻¹⋅s⁻¹), unit conversion factor.

julia> specificity(CGS,Metric) # m³⋅cm⁻³
2⁻⁶5⁻⁶ = 1.0×10⁻⁶ [m³]/[mL] Gauss -> Metric

julia> specificity(English,Metric) # m³⋅lb-mol⋅mol⁻¹⋅ft⁻³
ft³lb⁻¹2⁻³5⁻³ = 6.242796057614462×10⁻⁵ [m³mol⁻¹]/[ft³lb-mol⁻¹] English -> Metric
MeasureSystems.diffusionfluxConstant
diffusionflux : [L⁻²TN], [L⁻²TN], [L⁻²TN], [L⁻²TN], [L⁻²TN]
diffusionflux(U::UnitSystem,S::UnitSystem) = molaramount(U,S)*photonirradiance(U,S)
diffusionflux(v::Real,U::UnitSystem,S::UnitSystem) = v/diffusionflux(U,S)
L⁻²TN [ħ⁻¹mₑ²Mᵤ⁻¹ϕ⁻¹g₀⁻¹] Unified

Molar diffusion flux or molarmount times flux (mol⋅s⁻¹⋅m⁻²), unit conversion factor.

julia> diffusionflux(CGS,Metric) # cm²⋅m⁻²
2⁴5⁴ = 10000.0 [m⁻²]/[cm⁻²] Gauss -> Metric

julia> diffusionflux(English,Metric) # ft²⋅mol⋅lb-mol⁻¹⋅m⁻²
ft⁻²lb⋅2³5³ = 4882.42763638305 [m⁻²mol]/[ft⁻²lb-mol] English -> Metric

Photometric Units

MeasureSystems.luminousfluxConstant
luminousflux : [J], [J], [J], [J], [J]
luminousflux(U::UnitSystem,S::UnitSystem) = luminousenergy(U,S)*frequency(U,S)
luminousflux(v::Real,U::UnitSystem,S::UnitSystem) = v/luminousflux(U,S)
J [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified

Perceived power of light or luminousflux (lm, cd⋅rad⋅²), unit conversion factor.

MeasureSystems.luminousintensityConstant
luminousintensity : [JA⁻²], [J], [J], [J], [J]
luminousintensity(U::UnitSystem,S::UnitSystem) = luminousflux(U,S)/solidangle(U,S)
luminousintensity(v::Real,U::UnitSystem,S::UnitSystem) = v/luminousintensity(U,S)
JA⁻² [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻³g₀⁻²] Unified

Perceived power of light or luminousintensity (cd, lm⋅rad⁻²), unit conversion factor.

MeasureSystems.luminanceConstant
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
luminance(U::UnitSystem,S::UnitSystem) = luminousintensity(U,S)/area(U,S)
luminance(v::Real,U::UnitSystem,S::UnitSystem) = v/luminance(U,S)
L⁻²JA⁻² [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified

Luminous intensity per area or luminance (cd⋅m⁻², lm⋅m⁻²⋅rad⁻²), unit conversion factor.

julia> luminance(CGS,Metric) # lx⋅ph⁻¹
2⁴5⁴ = 10000.0 [m⁻²]/[cm⁻²] Gauss -> Metric

julia> luminance(IAU,Metric) # lx⋅au²⋅lm⁻¹
au⁻² = 4.46837049952(18) × 10⁻²³ [m⁻²]/[au⁻²] IAU☉ -> Metric

julia> luminance(English,Metric) # ft²⋅m⁻²
ft⁻² = 10.76391041670972 [m⁻²]/[ft⁻²] English -> Metric

julia> 1/10.76 # lx⋅fc⁻¹
0.0929368029739777
MeasureSystems.illuminanceConstant
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
illuminance(U::UnitSystem,S::UnitSystem) = luminousflux(U,S)/area(U,S)
illuminance(v::Real,U::UnitSystem,S::UnitSystem) = v/illuminance(U,S)
L⁻²J [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻³g₀⁻⁴] Unified

Luminous flux per area or luminance (lx, lm⋅m⁻², cd⋅m⁻²⋅rad²), unit conversion factor.

julia> illuminance(CGS,Metric) # lx⋅ph⁻¹
2⁴5⁴ = 10000.0 [m⁻²]/[cm⁻²] Gauss -> Metric

julia> illuminance(IAU,Metric) # lx⋅au²⋅lm⁻¹
au⁻² = 4.46837049952(18) × 10⁻²³ [m⁻²]/[au⁻²] IAU☉ -> Metric

julia> illuminance(English,Metric) # ft²⋅m⁻²
ft⁻² = 10.76391041670972 [m⁻²]/[ft⁻²] English -> Metric

julia> 1/10.76 # lx⋅fc⁻¹
0.0929368029739777
MeasureSystems.luminousenergyConstant
luminousenergy : [TJ], [TJ], [TJ], [TJ], [TJ]
luminousenergy(U::UnitSystem,S::UnitSystem) = luminousflux(U,S)*time(U,S)
luminousenergy(v::Real,U::UnitSystem,S::UnitSystem) = v/luminousenergy(U,S)
TJ [𝘤²mₑ⋅Kcd⋅g₀⁻¹] Unified

Perceived quantity of light or luminousenergy (lm⋅s, cd⋅s⋅sr), unit conversion factor.

julia> luminousenergy(IAU,Metric) # s⋅day⁻¹
2⁷3³5² = 86400.0 [s]/[D] IAU☉ -> Metric
MeasureSystems.luminousexposureConstant
luminousexposure : [L⁻²TJ], [L⁻²TJ], [L⁻²TJ], [L⁻²TJ], [L⁻²TJ]
luminousexposure(U::UnitSystem,S::UnitSystem) = illuminance(U,S)*time(U,S)
luminousexposure(v::Real,U::UnitSystem,S::UnitSystem) = v/luminousexposure(U,S)
L⁻²TJ [ħ⁻²𝘤⁴mₑ³Kcd⋅ϕ⁻²g₀⁻³] Unified

Integrated luminance along time (lx⋅s, lm⋅s⋅m⁻², cd⋅s⋅m⁻²⋅sr), unit conversion factor.

julia> luminousexposure(CGS,Metric) # lx⋅ph⁻¹
2⁴5⁴ = 10000.0 [m⁻²]/[cm⁻²] Gauss -> Metric

julia> luminousexposure(IAU,Metric) # s⋅au²⋅day⁻¹⋅m⁻²
au⁻²2⁷3³5² = 3.86067211159(15) × 10⁻¹⁸ [Hz⋅m⁻²]/[au⁻²D] IAU☉ -> Metric

julia> luminousexposure(English,Metric) # ft²⋅m⁻²
ft⁻² = 10.76391041670972 [m⁻²]/[ft⁻²] English -> Metric
MeasureSystems.luminousefficacyMethod
luminousefficacy : [F⁻¹L⁻¹TJ], [F⁻¹L⁻¹TJ], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J]
luminousefficacy(U::UnitSystem,S::UnitSystem) = luminousefficacy(S)/luminousefficacy(U)
luminousefficacy(v::Real,U::UnitSystem,S::UnitSystem) = v/luminousefficacy(U,S)
F⁻¹L⁻¹TJ [Kcd] Unified

Ratio of luminousflux to power or luminousefficacy (lm⋅W⁻¹), unit conversion factor.

julia> luminousefficacy(CGS,Metric) # erg⋅s⁻¹⋅W⁻¹
2⁷5⁷ = 1.0×10⁷ [J⁻¹]/[erg⁻¹] Gauss -> Metric

julia> luminousefficacy(English,Metric) # ft⋅lb⋅s⁻¹⋅W⁻¹
g₀⁻¹ft⁻¹lb⁻¹ = 0.7375621492772653 [J⁻¹]/[lbf⁻¹ft⁻¹] English -> Metric

Conversion Index