Physics Constants
The following are fundamental constants of physics:
There exists a deep relationship between the fundamental constants, which also makes them very suitable as a basis for UnitSystem dimensional analysis. All of the formulas on this page are part of the Test suite to guarantee their universal correctness.
MeasureSystems.Universe — Constantμₑᵤ, μₚᵤ, μₚₑ, αinv, αG, ΩΛPhysical measured dimensionless Coupling values with uncertainty are the electron to proton mass ratio μₑᵤ, proton to atomic mass ratio μₚᵤ, proton to electron mass ratio μₚₑ, inverted fine structure constant αinv, and the gravitaional coupling constant αG.
julia> μₑᵤ # electronunit(Universe)
μₑᵤ = 0.000548579909065(16)
julia> μₚᵤ # protonunit(Universe)
μₚᵤ = 1.007276466621(53)
julia> μₚₑ # protonelectron(Universe)
μₑᵤ⁻¹μₚᵤ = 1836.15267343(11)
julia> αinv # 1/finestructure(Universe)
α⁻¹ = 137.035999084(21)
julia> αG # coupling(Universe)
𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²2² = 1.751810(39) × 10⁻⁴⁵
julia> ΩΛ # darkenergydensity(Universe)
ΩΛ = 0.6889(56)Relativistic Constants
MeasureSystems.lightspeed — Constantlightspeed(U::UnitSystem) = 𝟏/sqrt(vacuumpermeability(U)*vacuumpermittivity(U))/lorentz(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹ [𝘤] UnifiedSpeed of light in a vacuum 𝘤 for massless particles (m⋅s⁻¹ or ft⋅s⁻¹).
julia> lightspeed(Metric) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Metric
julia> lightspeed(English) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] English
julia> lightspeed(IAU) # au⋅D⁻¹
𝘤⋅au⁻¹2⁷3³5² = 173.1446326742(35) [au⋅D⁻¹] IAU☉MeasureSystems.planck — Constantplanck(U::UnitSystem) = turn(x)*planckreduced(x)
action : [FLT], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
FLT⋅(τ = 6.283185307179586) [ħ⋅ϕ] UnifiedPlanck constant 𝘩 is energy per electromagnetic frequency (J⋅s or ft⋅lb⋅s).
julia> planck(SI2019) # J⋅s
𝘩 = 6.62607015×10⁻³⁴ [J⋅s] SI2019
julia> planck(SI2019)*lightspeed(SI2019) # J⋅m
𝘩⋅𝘤 = 1.9864458571489286×10⁻²⁵ [J⋅m] SI2019
julia> planck(CODATA) # J⋅s
RK⁻¹KJ⁻²2² = 6.626070039(82) × 10⁻³⁴ [J⋅s] CODATA
julia> planck(Conventional) # J⋅s
RK90⁻¹KJ90⁻²2² = 6.626068854361324×10⁻³⁴ [J⋅s] Conventional
julia> planck(SI2019)/elementarycharge(SI2019) # eV⋅s
𝘩⋅𝘦⁻¹ = 4.135667696923859×10⁻¹⁵ [Wb] SI2019
julia> planck(SI2019)*lightspeed(SI2019)/elementarycharge(SI2019) # eV⋅m
𝘩⋅𝘤⋅𝘦⁻¹ = 1.2398419843320026×10⁻⁶ [V⋅m] SI2019
julia> planck(British) # ft⋅lb⋅s
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹ = 4.887138541095932×10⁻³⁴ [lb⋅ft⋅s] BritishMeasureSystems.planckreduced — Constantplanckreduced(U::UnitSystem) = planck(x)/turn(x)
angularmomentum : [FLTA⁻¹], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
FLTA⁻¹ [ħ] UnifiedReduced Planck constant ħ is a Planck per radian (J⋅s⋅rad⁻¹ or ft⋅lb⋅s⋅rad⁻¹).
julia> planckreduced(SI2019) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] SI2019
julia> planckreduced(SI2019)*lightspeed(SI2019) # J⋅m⋅rad⁻¹
𝘩⋅𝘤⋅τ⁻¹ = 3.1615267734966903×10⁻²⁶ [J⋅m] SI2019
julia> planckreduced(CODATA) # J⋅s⋅rad⁻¹
RK⁻¹KJ⁻²τ⁻¹2² = 1.054571800(13) × 10⁻³⁴ [J⋅s] CODATA
julia> planckreduced(Conventional) # J⋅s⋅rad⁻¹
RK90⁻¹KJ90⁻²τ⁻¹2² = 1.0545716114388567×10⁻³⁴ [J⋅s] Conventional
julia> planckreduced(SI2019)/elementarycharge(SI2019) # eV⋅s⋅rad⁻¹
𝘩⋅𝘦⁻¹τ⁻¹ = 6.582119569509067×10⁻¹⁶ [Wb] SI2019
julia> planckreduced(SI2019)*lightspeed(SI2019)/elementarycharge(SI2019) # eV⋅m⋅rad⁻¹
𝘩⋅𝘤⋅𝘦⁻¹τ⁻¹ = 1.973269804593025×10⁻⁷ [V⋅m] SI2019
julia> planckreduced(British) # ft⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lb⋅ft⋅s] BritishMeasureSystems.planckmass — Constantplanckmass(U::UnitSystem) = electronmass(U)/sqrt(coupling(U))
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²mP⋅2⁻¹ = 2.389222(26) × 10²²) [mₑ] UnifiedPlanck mass factor mP from the gravitational coupling constant αG (kg or slugs).
juila> planckmass(Metric)*lightspeed(Metric)^2/elementarycharge(Metric) # eV⋅𝘤⁻²
𝘩⁻¹ᐟ²𝘤⁵ᐟ²α⁻¹ᐟ²mP⋅τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 1.220890(13) × 10²⁸ [V] Metric
juila> planckmass(Metric) # kg
mP = 2.176434(24) × 10⁻⁸ [kg] Metric
juila> planckmass(Metric)/dalton(Metric) # Da
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅mP⋅2⁻¹ = 1.310679(14) × 10¹⁹ [𝟙] Metric
juila> planckmass(Metric)*lightspeed(Metric)^2/elementarycharge(Metric)/sqrt(𝟐^2*τ) # eV⋅𝘤⁻²
𝘩⁻¹ᐟ²𝘤⁵ᐟ²α⁻¹ᐟ²mP⋅2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.435323(27) × 10²⁷ [V] Metric
julia> planckmass(PlanckGauss) # mP
𝟏 = 1.0 [mP] PlanckGaussMeasureSystems.gaussgravitation — Constantgaussgravitation(U::UnitSystem) = sqrt(gravitation(U)*solarmass(U)/astronomicalunit(U)^3)
angularfrequency : [T⁻¹A], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹A⋅(𝘤⁻¹R∞⁻¹α²kG⋅2⁻¹⁵3⁻⁷5⁻⁵ = 2.56456351221(79) × 10⁻²⁸) [ħ⁻¹𝘤²mₑ⋅g₀⁻¹] UnifiedGaussian gravitational constant k of Newton's laws (Hz or rad⋅D⁻¹).
julia> gaussgravitation(Engineering)
kG⋅τ⋅2⁻¹⁴3⁻⁷5⁻⁵ = 1.990983676471466×10⁻⁷ [s⁻¹rad] Engineering
julia> gaussgravitation(MetricGradian)
kG⋅2⁻¹⁰3⁻⁷5⁻³ = 1.2674995749028348×10⁻⁵ [s⁻¹gon] MetricGradian
julia> gaussgravitation(MetricDegree)
kG⋅2⁻¹¹3⁻⁵5⁻⁴ = 1.1407496174125516×10⁻⁵ [s⁻¹deg] MetricDegree
julia> gaussgravitation(MetricArcminute)
kG⋅2⁻⁹3⁻⁴5⁻³ = 0.0006844497704475308 [s⁻¹amin] MetricArcminute
julia> gaussgravitation(MetricArcsecond)
kG⋅2⁻⁷3⁻³5⁻² = 0.04106698622685187 [s⁻¹asec] MetricArcsecond
juila> gaussgravitation(MPH)
kG⋅τ⋅2⁻¹⁰3⁻⁵5⁻³ = 0.0007167541235297278 [h⁻¹] MPH
julia> gaussgravitation(IAU)
kG⋅τ⋅2⁻⁷3⁻⁴5⁻³ = 0.017202098964713464 [D⁻¹] IAU☉MeasureSystems.gravitation — Constantgravitation(U::UnitSystem) = lightspeed(U)*planckreduced(U)/planckmass(U)^2
nonstandard : [FM⁻²L²], [F⁻¹L⁴T⁻⁴], [M⁻¹L³T⁻²], [M⁻¹L³T⁻²], [M⁻¹L³T⁻²]
FM⁻²L²⋅(𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²2² = 1.751810(39) × 10⁻⁴⁵) [ħ⋅𝘤⋅mₑ⁻²ϕ] UnifiedUniversal gravitational constant G of Newton's law (m³⋅kg⁻¹⋅s⁻² or ft³⋅slug⁻¹⋅s⁻²).
juila> gravitation(Metric) # m³⋅kg⁻¹⋅s⁻²
𝘩⋅𝘤⋅mP⁻²τ⁻¹ = 6.67430(15) × 10⁻¹¹ [kg⁻¹m³s⁻²] Metric
julia> gravitation(English) # ft³⋅lbm⁻¹⋅s⁻²
𝘩⋅𝘤⋅g₀⁻¹ft⁻²lb⋅mP⁻²τ⁻¹ = 3.322929(73) × 10⁻¹¹ [lbf⋅lbm⁻²ft²] English
julia> gravitation(PlanckGauss)
𝟏 = 1.0 [mP⁻²] PlanckGaussMeasureSystems.einstein — Constanteinstein(U::UnitSystem) = 𝟐^2*τ*gravitation(U)/lightspeed(U)^4
nonstandard : [FM⁻²L⁻²T⁴], [F⁻¹], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²]
FM⁻²L⁻²T⁴⋅(𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²τ⋅2⁴ = 4.402779(97) × 10⁻⁴⁴) [ħ⋅𝘤⁻³mₑ⁻²ϕ] UnifiedEinstein's gravitational constant from the Einstein field equations (s⋅²⋅m⁻¹⋅kg⁻¹).
julia> einstein(Metric) # s²⋅m⁻¹⋅kg⁻¹
𝘩⋅𝘤⁻³mP⁻²2² = 2.076648(46) × 10⁻⁴³ [N⁻¹] Metric
julia> einstein(IAU) # day²⋅au⁻¹⋅M☉⁻¹
𝘤⁻⁴au⁴kG²τ³2⁻⁴⁰3⁻²⁰5⁻¹⁴ = 8.27497346775(66) × 10⁻¹² [M☉⁻¹au⁻¹D²] IAU☉Atomic & Nuclear Constants
MeasureSystems.dalton — Constantdalton(U::UnitSystem) = molarmass(U)/avogadro(U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(μₑᵤ⁻¹ = 1822.888486209(53)) [mₑ] UnifiedAtomic mass unit Da of 1/12 of the C₁₂ carbon-12 atom's mass (kg or slugs).
julia> dalton(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 1.66053906660(51) × 10⁻²⁷ [kg] Metric
julia> dalton(Hartree) # mₑ
μₑᵤ⁻¹ = 1822.888486209(53) [𝟙] Hartree
julia> dalton(QCD) # mₚ
μₚᵤ⁻¹ = 0.992776097862(52) [mₚ] QCD
julia> dalton(Metric)*lightspeed(Metric)^2 # J
𝘩⋅𝘤⋅R∞⋅α⁻²μₑᵤ⁻¹2 = 1.49241808560(46) × 10⁻¹⁰ [J] Metric
julia> dalton(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 9.3149410242(29) × 10⁸ [V] SI2019
julia> dalton(British) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⋅lb⁻¹2 = 1.13783069118(35) × 10⁻²⁸ [slug] BritishMeasureSystems.protonmass — Constantprotonmass(U::UnitSystem) = protonunit(U)*dalton(U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(μₑᵤ⁻¹μₚᵤ = 1836.15267343(11)) [mₑ] UnifiedProton mass mₚ of subatomic particle with +𝘦 elementary charge (kg or mass).
julia> protonmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg] Metric
julia> protonmass(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 9.3827208816(29) × 10⁸ [V] SI2019
julia> protonmass(Metric)/dalton(Metric) # Da
μₚᵤ = 1.007276466621(53) [𝟙] Metric
julia> protonmass(Hartree) # mₑ
μₑᵤ⁻¹μₚᵤ = 1836.15267343(11) [𝟙] Hartree
julia> protonmass(QCD) # mₚ
𝟏 = 1.0 [mₚ] QCDMeasureSystems.electronmass — Constantelectronmass(U::UnitSystem) = protonmass(U)/protonelectron(U) # αinv^2*R∞*2𝘩/𝘤
mass : [M], [FL⁻¹T²], [M], [M], [M]
M [mₑ] UnifiedElectron rest mass mₑ of subatomic particle with -𝘦 elementary charge (kg or slugs).
julia> electronmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Metric
julia> electronmass(CODATA) # kg
𝘤⁻¹R∞⋅α⁻²RK⁻¹KJ⁻²2³ = 9.10938355(11) × 10⁻³¹ [kg] CODATA
julia> electronmass(Conventional) # kg
𝘤⁻¹R∞⋅α⁻²RK90⁻¹KJ90⁻²2³ = 9.1093819203(28) × 10⁻³¹ [kg] Conventional
julia> electronmass(International) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²Ωᵢₜ⋅Vᵢₜ⁻²2 = 9.1078806534(28) × 10⁻³¹ [kg] International
julia> electronmass(Metric)/dalton(Metric) # Da
μₑᵤ = 0.000548579909065(16) [𝟙] Metric
julia> electronmass(QCD) # mₚ
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCD
julia> electronmass(Hartree) # mₑ
𝟏 = 1.0 [𝟙] Hartree
julia> electronmass(Metric)*lightspeed(Metric)^2 # J
𝘩⋅𝘤⋅R∞⋅α⁻²2 = 8.1871057769(25) × 10⁻¹⁴ [J] Metric
julia> electronmass(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²2 = 510998.95000(16) [V] SI2019
julia> electronmass(English) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] EnglishMeasureSystems.hartree — Constanthartree(U::UnitSystem) = electronmass(U)/gravity(U)*(lightspeed(U)*finestructure(U))^2
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(α² = 5.3251354520(16) × 10⁻⁵) [𝘤²mₑ⋅g₀⁻¹] UnifiedHartree electric potential energy Eₕ of the hydrogen atom at ground state is 2R∞*𝘩*𝘤 (J).
julia> hartree(SI2019)/elementarycharge(SI2019) # eV
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅2 = 27.211386245989(52) [V] SI2019
julia> hartree(Metric) # J
𝘩⋅𝘤⋅R∞⋅2 = 4.3597447222072(83) × 10⁻¹⁸ [J] Metric
julia> hartree(CGS) # erg
𝘩⋅𝘤⋅R∞⋅2⁸5⁷ = 4.3597447222072(83) × 10⁻¹¹ [erg] Gauss
julia> hartree(Metric)*avogadro(Metric)/kilo # kJ⋅mol⁻¹
𝘤²α²μₑᵤ⋅2⁻⁶5⁻⁶ = 2625.49964038(81) [J⋅mol⁻¹] Metric
julia> hartree(Metric)*avogadro(Metric)/kilocalorie(Metric) # kcal⋅mol⁻¹
𝘤²α²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁸3⁻²5⁻⁷43 = 627.09920344(19) [mol⁻¹] Metric
julia> 𝟐*rydberg(CGS) # Eₕ/𝘩/𝘤/100 cm⁻¹
R∞⋅2⁻¹5⁻² = 219474.63136320(42) [cm⁻¹] Gauss
julia> hartree(Metric)/planck(Metric) # Hz
𝘤⋅R∞⋅2 = 6.579683920502(13) × 10¹⁵ [Hz] Metric
julia> hartree(Metric)/boltzmann(Metric) # K
kB⁻¹NA⁻¹𝘤²α²μₑᵤ⋅2⁻³5⁻³ = 315775.024913(97) [K] MetricIn a Gaussian unit system where 4π*ε₀ == 1 the Hartree energy is 𝘦^2/a₀.
MeasureSystems.rydberg — Constantrydberg(U::UnitSystem) = hartree(U)/2planck(U)/lightspeed(U) # Eₕ/2𝘩/𝘤
wavenumber : [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹⋅(α²τ⁻¹2⁻¹ = 4.2376081491(13) × 10⁻⁶) [ħ⁻¹𝘤⋅mₑ⋅ϕ⁻¹g₀⁻¹] UnifiedRydberg constant R∞ is lowest energy photon capable of ionizing atom at ground state (m⁻¹).
julia> rydberg(Metric) # m⁻¹
R∞ = 1.0973731568160(21) × 10⁷ [m⁻¹] MetricThe Rydberg constant for hydrogen RH is R∞*mₚ/(mₑ+mₚ) (m⁻¹).
julia> rydberg(Metric)*protonmass(Metric)/(electronmass(Metric)+protonmass(Metric)) # m⁻¹
𝘩⋅𝘤⁻¹R∞²α⁻²μₑᵤ⁻¹μₚᵤ⋅2⋅5.9753831112(19) × 10²⁶ = 1.09677583403(48) × 10⁷ [m⁻¹] MetricRydberg unit of photon energy Ry is 𝘩*𝘤*R∞ or Eₕ/2 (J).
julia> hartree(Metric)/2 # J
𝘩⋅𝘤⋅R∞ = 2.1798723611036(42) × 10⁻¹⁸ [J] Metric
julia> hartree(SI2019)/𝟐/elementarycharge(SI2019) # eV
𝘩⋅𝘤⋅𝘦⁻¹R∞ = 13.605693122994(26) [V] SI2019Rydberg photon frequency 𝘤*R∞ or Eₕ/2𝘩 (Hz).
julia> lightspeed(Metric)*rydberg(Metric) # Hz
𝘤⋅R∞ = 3.2898419602509(63) × 10¹⁵ [Hz] MetricRydberg wavelength 1/R∞ (m).
julia> 𝟏/rydberg(Metric) # m
R∞⁻¹ = 9.112670505824(17) × 10⁻⁸ [m] Metric
julia> 𝟏/rydberg(Metric)/τ # m⋅rad⁻¹
R∞⁻¹τ⁻¹ = 1.4503265557696(28) × 10⁻⁸ [m] MetricPrecision measurements of the Rydberg constants are within a relative standard uncertainty of under 2 parts in 10¹², and is chosen to constrain values of other physical constants.
MeasureSystems.bohr — Constantbohr(U::UnitSystem) = planckreduced(U)*gravity(U)/electronmass(U)/lightspeed(U)/finestructure(U)
angularlength : [LA⁻¹], [L], [L], [L], [L]
LA⁻¹⋅(α⁻¹ = 137.035999084(21)) [ħ⋅𝘤⁻¹mₑ⁻¹g₀] UnifiedBohr radius of the hydrogen atom in its ground state a₀ (m).
julia> bohr(Metric) # m
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m] Metric
julia> bohr(IPS) # in
R∞⁻¹α⋅ft⁻¹τ⁻¹2⋅3 = 2.08337484607(32) × 10⁻⁹ [in] IPS
julia> bohr(Hartree) # a₀
𝟏 = 1.0 [a₀] HartreeMeasureSystems.electronradius — Constantelectronradius(U::UnitSystem) = finestructure(U)*planckreduced(U)*gravity(U)/electronmass(U)/lightspeed(U)
angularlength : [LA⁻¹], [L], [L], [L], [L]
LA⁻¹⋅(α = 0.0072973525693(11)) [ħ⋅𝘤⁻¹mₑ⁻¹g₀] UnifiedClassical electron radius or Lorentz radius or Thomson scattering length (m).
julia> electronradius(Metric) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] Metric
julia> electronradius(CODATA) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] CODATA
julia> electronradius(Conventional) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] Conventional
julia> electronradius(Hartree) # a₀
α² = 5.3251354520(16) × 10⁻⁵ [a₀] HartreeMeasureSystems.hyperfine — Constanthyperfine(U::UnitSystem) = frequency(ΔνCs = 9.19263177×10⁹,U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹ΔνCs⋅R∞⁻¹α²τ⁻¹2⁻¹ = 1.18409248138(36) × 10⁻¹¹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] UnifiedUnperturbed groundstate hyperfine transition frequency ΔνCs of caesium-133 atom (Hz).
julia> hyperfine(Metric) # Hz
ΔνCs = 9.19263177×10⁹ [Hz] MetricThermodynamic Constants
MeasureSystems.molarmass — Constantmolarmass(U::UnitSystem) = avogadro(U)*electronmass(U)/electronunit(U)
molarmass : [MN⁻¹], [FL⁻¹T²N⁻¹], [MN⁻¹], [MN⁻¹], [MN⁻¹]
MN⁻¹ [Mᵤ] UnifiedMolar mass constant Mᵤ is the ratio of the molarmass and relativemass of a chemical.
julia> molarmass(CGS) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] Gauss
julia> molarmass(Metric) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Metric
julia> molarmass(SI2019) # kg⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 0.00099999999966(31) [kg⋅mol⁻¹] SI2019
julia> molarmass(International) # kg⋅mol⁻¹
Ωᵢₜ⋅Vᵢₜ⁻²2⁻³5⁻³ = 0.0009998350000179567 [kg⋅mol⁻¹] InternationalMeasureSystems.avogadro — Constantavogadro(U::UnitSystem) = molargas(x)/boltzmann(x) # Mᵤ/dalton(x)
nonstandard : [N⁻¹], [N⁻¹], [N⁻¹], [N⁻¹], [N⁻¹]
N⁻¹⋅(μₑᵤ = 0.000548579909065(16)) [mₑ⁻¹Mᵤ] UnifiedAvogadro NA is molarmass(x)/dalton(x) number of atoms in a 12 g sample of C₁₂.
julia> avogadro(SI2019) # mol⁻¹
NA = 6.02214076×10²³ [mol⁻¹] SI2019
julia> avogadro(Metric) # mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 6.0221407621(19) × 10²³ [mol⁻¹] Metric
julia> avogadro(CODATA) # mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅RK⋅KJ²2⁻⁶5⁻³ = 6.022140863(75) × 10²³ [mol⁻¹] CODATA
julia> avogadro(Conventional) # mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅RK90⋅KJ90²2⁻⁶5⁻³ = 6.0221419396(19) × 10²³ [mol⁻¹] Conventional
julia> avogadro(English) # lb-mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅lb⋅2⁻¹ = 2.73159710074(84) × 10²⁶ [lb-mol⁻¹] English
julia> avogadro(British) # slug-mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅g₀⋅ft⁻¹lb⋅2⁻¹ = 8.7886537756(27) × 10²⁷ [slug-mol⁻¹] BritishMeasureSystems.boltzmann — Constantboltzmann(U::UnitSystem) = molargas(x)/avogadro(x)
entropy : [FLΘ⁻¹], [FLΘ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹]
FLΘ⁻¹ [kB] UnifiedBoltzmann constant kB is the entropy amount of a unit number microstate permutation.
julia> boltzmann(SI2019) # J⋅K⁻¹
kB = 1.380649×10⁻²³ [J⋅K⁻¹] SI2019
julia> boltzmann(Metric) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 1.38064899953(43) × 10⁻²³ [J⋅K⁻¹] Metric
julia> boltzmann(SI2019)/elementarycharge(SI2019) # eV⋅K⁻¹
kB⋅𝘦⁻¹ = 8.617333262145179×10⁻⁵ [V⋅K⁻¹] SI2019
julia> boltzmann(SI2019)/planck(SI2019) # Hz⋅K⁻¹
kB⋅𝘩⁻¹ = 2.0836619123327576×10¹⁰ [Hz⋅K⁻¹] SI2019
julia> boltzmann(CGS) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] Gauss
julia> boltzmann(SI2019)/calorie(SI2019) # calᵢₜ⋅K⁻¹
kB⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 3.2976728498006145×10⁻²⁴ [K⁻¹] SI2019
julia> boltzmann(SI2019)*°R/calorie(SI2019) # calᵢₜ⋅°R⁻¹
kB⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻⁴43 = 1.832040472111452×10⁻²⁴ [K⁻¹] SI2019
julia> boltzmann(Brtish) # ft⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lb⋅ft⋅°R⁻¹] British
julia> boltzmann(SI2019)/planck(SI2019)/lightspeed(SI2019) # m⁻¹⋅K⁻¹
kB⋅𝘩⁻¹𝘤⁻¹ = 69.50348004861274 [m⁻¹K⁻¹] SI2019
julia> avogadro(SI2019)*boltzmann(SI2019)/calorie(SI2019) # calᵢₜ⋅mol⁻¹⋅K⁻¹
kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 [K⁻¹mol⁻¹] SI2019
julia> dB(boltzmann(SI2019)) # dB(W⋅K⁻¹⋅Hz⁻¹)
dB(kB) = -228.59916717321767 [dB(kg⋅m²s⁻²K⁻¹)] SI2019MeasureSystems.molargas — Constantmolargas(U::UnitSystem) = boltzmann(x)*avogadro(x)
molarentropy : [FLΘ⁻¹N⁻¹], [FLΘ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹]
FLΘ⁻¹N⁻¹⋅(μₑᵤ = 0.000548579909065(16)) [kB⋅mₑ⁻¹Mᵤ] UnifiedUniversal gas constant Rᵤ is factored into specific gasconstant(x)*molarmass(x) values.
julia> molargas(SI2019) # J⋅K⁻¹⋅mol⁻¹
kB⋅NA = 8.31446261815324 [J⋅K⁻¹mol⁻¹] SI2019
julia> molargas(English)/𝟐^4/𝟑^2 # psi⋅ft³⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅g₀⁻¹ft⁻¹2⁻¹3⁻⁴5⁴ = 10.731577089016287 [lbf⋅ft⋅°R⁻¹lb-mol⁻¹] English
julia> molargas(English)/atmosphere(English) # atm⋅ft³⋅R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅ft⁻³lb⋅atm⁻¹2³3⁻²5⁴ = 0.7302405072952731 [ft³°R⁻¹lb-mol⁻¹] English
julia> molargas(English)/thermalunit(English) # BTU⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 [°R⁻¹lb-mol⁻¹] English
julia> molargas(Metric)/atmosphere(Metric) # atm⋅m³⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅atm⁻¹ = 8.205736608095969×10⁻⁵ [m³K⁻¹mol⁻¹] Metric
julia> molargas(Metric)/torr(Metric) # m³⋅torr⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅atm⁻¹2³5⋅19 = 0.062363598221529364 [m³K⁻¹mol⁻¹] Metric
julia> molargas(English)/torr(English) # ft³⋅torr⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅ft⁻³lb⋅atm⁻¹2⁶3⁻²5⁵19 = 554.9827855444075 [ft³°R⁻¹lb-mol⁻¹] English
julia> molargas(CGS) # erg⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅2⁷5⁷ = 8.31446261815324×10⁷ [erg⋅K⁻¹mol⁻¹] Gauss
julia> molargas(English) # ft⋅lb⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅g₀⁻¹ft⁻¹2³3⁻²5⁴ = 1545.3471008183453 [lbf⋅ft⋅°R⁻¹lb-mol⁻¹] English
julia> molargas(British) # ft⋅lb⋅°R⁻¹⋅slug-mol⁻¹
kB⋅NA⋅ft⁻²2³3⁻²5⁴ = 49720.07265826846 [lb⋅ft⋅°R⁻¹slug-mol⁻¹] British
julia> molargas(SI1976) # J⋅K⁻¹⋅mol⁻¹ (US1976 Standard Atmosphere)
8.31432 = 8.31432 [kg⋅m²s⁻²K⁻¹mol⁻¹] SI1976MeasureSystems.loschmidt — Constantloschmidt(U::UnitSystem) = atmosphere(U)/boltzmann(U)/temperature(T₀,SI2019,U)
numberdensity : [L⁻³], [L⁻³], [L⁻³], [L⁻³], [L⁻³]
L⁻³⋅(kB⁻¹R∞⁻³α⁶T₀⁻¹atm⋅τ⁻³2⁻³ = 1.5471467610(14) × 10⁻¹²) [ħ⁻³𝘤³mₑ³ϕ⁻³g₀⁻³] UnifiedNumber of molecules (number density) of an ideal gas in a unit volume (m⁻³ or ft⁻³).
julia> loschmidt(SI2019) # m⁻³
kB⁻¹T₀⁻¹atm = 2.686780111798444×10²⁵ [m⁻³] SI2019
julia> loschmidt(Metric,atm,T₀) # m⁻³
kB⁻¹NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅2⁻⁴5⁻³ = 2.68678011272(83) × 10²⁵ [m⁻³] Metric
julia> loschmidt(Conventional,atm,T₀) # m⁻³
kB⁻¹NA⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅RK90⋅KJ90²2⁻⁶5⁻³ = 2.68678063809(83) × 10²⁵ [m⁻³] Conventional
julia> loschmidt(CODATA,atm,T₀) # m⁻³
𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅RK⋅KJ²Rᵤ2014⁻¹2⁻⁶5⁻³ = 2.6867811(16) × 10²⁵ [m⁻³] CODATA
julia> loschmidt(SI1976,atm,T₀) # m⁻³
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅2⁻⁴5⁻³/8.31432 = 2.68682619991(83) × 10²⁵ [m⁻³] SI1976
julia> loschmidt(English) # ft⁻³
kB⁻¹ft³T₀⁻¹atm = 7.608114025223316×10²³ [ft⁻³] English
julia> loschmidt(IAU) # au⁻³
kB⁻¹au³T₀⁻¹atm = 8.99514898792(54) × 10⁵⁸ [au⁻³] IAU☉MeasureSystems.sackurtetrode — Functionsackurtetrode(U::UnitSystem,P=atm,T=𝟏,m=Da) = log(kB*T/P*sqrt(m*kB*T/τ/ħ^2)^3)+5/2
dimensionless : [𝟙], [𝟙], [𝟙], [𝟙], [𝟙]
log(FL⁻²Θ⁻⁵ᐟ²A³ᐟ²⋅(μₑᵤ⁻³ᐟ²atm⁻¹τ⁻³ᐟ²exp(2⁻¹5) = 0.594141574194(26)))Ideal gas entropy density for pressure P, temperature T, atomic mass m (dimensionless).
julia> sackurtetrode(Metric)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(SI2019)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(Conventional)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(CODATA)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(SI2019,𝟏𝟎^5)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴τ³ᐟ²2¹³ᐟ²5⁵ᐟ²⋅12.182493960703473) = -1.1517075379 ± 1.2e-9MeasureSystems.mechanicalheat — Functionmechanicalheat(U::UnitSystem) = molargas(U)/molargas(Metric)*calorie(Metric)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]Heat to raise 1 mass unit of water by 1 temperature unit, or kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 mechanicalheat per molaramount per temperature units (J or ft⋅lb).
julia> mechanicalheat(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 4.186737323211057 [J] Metric
julia> mechanicalheat(English) # ft⋅lb
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 778.1576129990752 [lbf⋅ft] English
julia> mechanicalheat(British) # ft⋅lb
ft⁻²Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 25036.480825188257 [lb⋅ft] BritishMeasureSystems.stefan — Constantstefan(U::UnitSystem) = τ^5/𝟐^4*boltzmann(U)^4/(𝟑*𝟓*planck(U)^3*lightspeed(U)^2)
nonstandard : [FL⁻¹T⁻¹Θ⁻⁴], [FL⁻¹T⁻¹Θ⁻⁴], [MT⁻³Θ⁻⁴], [MT⁻³Θ⁻⁴], [MT⁻³Θ⁻⁴]
FL⁻¹T⁻¹Θ⁻⁴⋅(τ²2⁻⁴3⁻¹5⁻¹ = 0.16449340668482262) [kB⁴ħ⁻³𝘤⁻²ϕ⁻³] UnifiedStefan-Boltzmann proportionality σ of black body radiation (W⋅m⁻²⋅K⁻⁴ or ?⋅ft⁻²⋅°R⁻⁴).
julia> stefan(SI2019) # W⋅m⁻²⋅K⁻⁴
kB⁴𝘩⁻³𝘤⁻²τ⁵2⁻⁴3⁻¹5⁻¹ = 5.670374419184431×10⁻⁸ [W⋅m⁻²K⁻⁴] SI2019
julia> stefan(Metric) # W⋅m⁻²⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴τ⁵2¹²3⁻¹5¹¹ = 5.6703744114(70) × 10⁻⁸ [W⋅m⁻²K⁻⁴] Metric
julia> stefan(Conventional) # W⋅m⁻²⋅K⁻⁴
kB⁴NA⁴𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴RK90⁻¹KJ90⁻²τ⁵2¹⁴3⁻¹5¹¹ = 5.6703733026(70) × 10⁻⁸ [W⋅m⁻²K⁻⁴] Conventional
julia> stefan(CODATA) # W⋅m⁻²⋅K⁻⁴
𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴RK⁻¹KJ⁻²Rᵤ2014⁴τ⁵2¹⁴3⁻¹5¹¹ = 5.670367(13) × 10⁻⁸ [W⋅m⁻²K⁻⁴] CODATA
julia> stefan(Metric)*day(Metric)/(calorie(Metric)*100^2) # cal⋅cm⁻²⋅day⁻¹⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴Ωᵢₜ⋅Vᵢₜ⁻²τ⁵2¹⁷5¹²43 = 0.0011701721683(14) [m⁻²K⁻⁴] Metric
julia> stefan(English) # lb⋅s⁻¹⋅ft⁻³⋅°R⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴g₀⁻¹ft⋅lb⁻¹τ⁵2¹²3⁻⁹5¹⁵ = 3.7012656963(46) × 10⁻¹⁰ [lbf⋅ft⁻¹s⁻¹°R⁻⁴] EnglishMeasureSystems.radiationdensity — Constantradiationdensity(U::UnitSystem) = 𝟐^2*stefan(U)/lightspeed(U)
nonstandard : [FL⁻²Θ⁻⁴], [FL⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴]
FL⁻²Θ⁻⁴⋅(τ²2⁻²3⁻¹5⁻¹ = 0.6579736267392905) [kB⁴ħ⁻³𝘤⁻³ϕ⁻³] UnifiedRaditation density constant of black body radiation (J⋅m⁻³⋅K⁻⁴ or lb⋅ft⁻²⋅°R⁻⁴).
julia> radiationdensity(Metric) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴τ⁵2¹⁴3⁻¹5¹¹ = 7.5657332399(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] Metric
julia> radiationdensity(SI2019) # J⋅m⁻³⋅K⁻⁴
kB⁴𝘩⁻³𝘤⁻³τ⁵2⁻²3⁻¹5⁻¹ = 7.565733250280007×10⁻¹⁶ [J⋅m⁻³K⁻⁴] SI2019
julia> radiationdensity(Conventional) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴RK90⁻¹KJ90⁻²τ⁵2¹⁶3⁻¹5¹¹ = 7.5657317605(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] Conventional
julia> radiationdensity(CODATA) # J⋅m⁻³⋅K⁻⁴
𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴RK⁻¹KJ⁻²Rᵤ2014⁴τ⁵2¹⁶3⁻¹5¹¹ = 7.565723(17) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] CODATA
julia> radiationdensity(International) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴Ωᵢₜ⋅Vᵢₜ⁻²τ⁵2¹⁴3⁻¹5¹¹ = 7.5644848940(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] InternationalMeasureSystems.wienwavelength — Constantwienwavelength(U::UnitSystem) = planck(U)*lightspeed(U)/boltzmann(U)/(𝟓+W₀(-𝟓*exp(-𝟓)))
nonstandard : [LΘ], [LΘ], [LΘ], [LΘ], [LΘ]
LΘ⋅(τ/4.965114231744276 = 1.2654664150541133) [kB⁻¹ħ⋅𝘤⋅ϕ] UnifiedWien wavelength displacement law constant based on Lambert W₀ evaluation (m⋅K or ft⋅°R).
julia> wienwavelength(Metric) # m⋅K
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³/4.965114231744276 = 0.00289777195618(89) [m⋅K] Metric
julia> wienwavelength(SI2019) # m⋅K
kB⁻¹𝘩⋅𝘤/4.965114231744276 = 0.0028977719551851727 [m⋅K] SI2019
julia> wienwavelength(Conventional) # m⋅K
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³/4.965114231744276 = 0.00289777195618(89) [m⋅K] Conventional
julia> wienwavelength(CODATA) # m⋅K
𝘤²R∞⁻¹α²μₑᵤ⋅Rᵤ2014⁻¹2⁻⁴5⁻³/4.965114231744276 = 0.0028977729(17) [m⋅K] CODATA
julia> wienwavelength(English) # ft⋅°R
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅ft⁻¹2⁻⁴3²5⁻⁴/4.965114231744276 = 0.0171128265129(53) [ft⋅°R] EnglishMeasureSystems.wienfrequency — Constantwienfrequency(U::UnitSystem) = (𝟑+W₀(-𝟑*exp(-𝟑)))*boltzmann(U)/planck(U)
nonstandard : [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹]
T⁻¹Θ⁻¹⋅(τ⁻¹⋅2.8214393721220787 = 0.44904602270732236) [kB⋅ħ⁻¹ϕ⁻¹] UnifiedWien frequency radiation law constant based on Lambert W₀ evaluation (Hz⋅K⁻¹).
julia> wienfrequency(Metric) # Hz⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅2.8214393721220787 = 5.8789257556(18) × 10¹⁰ [Hz⋅K⁻¹] Metric
julia> wienfrequency(SI2019) # Hz⋅K⁻¹
kB⋅𝘩⁻¹⋅2.8214393721220787 = 5.8789257576468254×10¹⁰ [Hz⋅K⁻¹] SI2019
julia> wienfrequency(Conventional) # Hz⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅2.8214393721220787 = 5.8789257556(18) × 10¹⁰ [Hz⋅K⁻¹] Conventional
julia> wienfrequency(CODATA) # Hz⋅K⁻¹
𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹Rᵤ2014⋅2⁴5³⋅2.8214393721220787 = 5.8789238(34) × 10¹⁰ [Hz⋅K⁻¹] CODATA
julia> wienfrequency(English) # Hz⋅°R⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴⋅2.8214393721220787 = 3.2660698642(10) × 10¹⁰ [Hz⋅°R⁻¹] EnglishMeasureSystems.luminousefficacy — Constantluminousefficacy(U::UnitSystem) = Kcd*power(U)
luminousefficacy(U::UnitSystem{𝟏}) = 𝟏
luminousefficacy : [F⁻¹L⁻¹TJ], [F⁻¹L⁻¹TJ], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J]
F⁻¹L⁻¹TJ [Kcd] UnifiedLuminous efficacy of monochromatic radiation Kcd of frequency 540 THz (lm⋅W⁻¹).
julia> luminousefficacy(Metric) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] Metric
julia> luminousefficacy(CODATA) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK⋅KJ²2⁻² = 683.0197015(85) [lm⋅W⁻¹] CODATA
julia> luminousefficacy(Conventional) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK90⋅KJ90²2⁻² = 683.0198236454071 [lm⋅W⁻¹] Conventional
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] International
julia> luminousefficacy(British) # lm⋅s³⋅slug⋅ft⁻²
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lb⁻¹ft⁻¹s⋅lm] BritishElectromagnetic Constants
MeasureSystems.rationalization — Constantrationalization(U::UnitSystem) = spat(U)*biotsavart(U)/vacuumpermeability(U)/lorentz(U)
demagnetizingfactor : [R], [𝟙], [𝟙], [𝟙], [𝟙]
R [λ] UnifiedConstant of magnetization and polarization density or spat(U)*coulomb(U)*permittivity(U).
julia> rationalization(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> rationalization(Gauss)
τ⋅2 = 12.566370614359172 [𝟙] GaussMeasureSystems.lorentz — Constantlorentz(U::UnitSystem) = spat(U)*biotsavart(U)/vacuumpermeability(U)/rationalization(U)
nonstandard : [C⁻¹], [𝟙], [𝟙], [𝟙], [𝟙]
C⁻¹ [αL] UnifiedElectromagnetic proportionality constant αL for the Lorentz's law force (dimensionless).
julia> lorentz(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> lorentz(LorentzHeaviside)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
julia> lorentz(Gauss)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] GaussMeasureSystems.biotsavart — Constantbiotsavart(U::UnitSystem) = vacuumpermeability(U)*lorentz(U)*rationalization(U)/𝟐/τ
nonstandard : [FT²Q⁻²C], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²C⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [μ₀⋅λ⋅αL] UnifiedMagnetostatic proportionality constant αB for the Biot-Savart's law (H/m).
julia> biotsavart(Metric) # H⋅m⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [H⋅m⁻¹] Metric
julia> biotsavart(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅τ⁻¹ = 1.00000000040(28) × 10⁻⁷ [H⋅m⁻¹] CODATA
julia> biotsavart(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹ = 1.00000000055(15) × 10⁻⁷ [H⋅m⁻¹] SI2019
julia> biotsavart(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅τ⁻¹ = 9.9999998275(15) × 10⁻⁸ [H⋅m⁻¹] Conventional
julia> biotsavart(International) # H⋅m⁻¹
Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 9.995052449037727×10⁻⁸ [H⋅m⁻¹] International
julia> biotsavart(InternationalMean) # H⋅m⁻¹
2⁻⁷5⁻⁷/1.00049 = 9.995102399824086×10⁻⁸ [H⋅m⁻¹] InternationalMean
julia> biotsavart(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> biotsavart(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> biotsavart(Gauss) # abH⋅cm⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] Gauss
julia> biotsavart(HLU) # hlH⋅cm⁻¹
𝘤⁻¹τ⁻¹2⁻³5⁻² = 2.654418729438073×10⁻¹² [cm⁻¹s] LorentzHeavisideMeasureSystems.vacuumimpedance — Constantvacuumimpedance(U::UnitSystem) = vacuumpermeability(U)*lightspeed(U)*rationalization(U)*lorentz(U)^2
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻² [𝘤⋅μ₀⋅λ⋅αL²] UnifiedVacuum impedance of free space Z₀ is magnitude ratio of electric to magnetic field (Ω).
julia> vacuumimpedance(Metric) # Ω
𝘤⋅τ⋅2⁻⁶5⁻⁷ = 376.73031346177066 [Ω] Metric
julia> vacuumimpedance(Conventional) # Ω
α⋅RK90⋅2 = 376.730306964(58) [Ω] Conventional
julia> vacuumimpedance(CODATA) # Ω
α⋅RK⋅2 = 376.73031361(10) [Ω] CODATA
julia> vacuumimpedance(SI2019) # Ω
𝘩⋅𝘦⁻²α⋅2 = 376.730313667(58) [Ω] SI2019
julia> vacuumimpedance(International) # Ω
𝘤⋅Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 376.54392421928213 [Ω] International
julia> vacuumimpedance(InternationalMean) # Ω
𝘤⋅τ⋅2⁻⁶5⁻⁷/1.00049 = 376.5458060168224 [Ω] InternationalMean
julia> 120π # 3e8*μ₀ # Ω
376.99111843077515
julia> vacuumimpedance(EMU) # abΩ
𝘤⋅τ⋅2³5² = 3.767303134617706×10¹¹ [cm⋅s⁻¹] EMU
julia> vacuumimpedance(ESU) # statΩ
𝘤⁻¹τ⋅2⁻¹5⁻² = 4.1916900439033643×10⁻¹⁰ [cm⁻¹s] ESU
julia> vacuumimpedance(HLU) # hlΩ
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
julia> vacuumimpedance(IPS) # in⋅lb⋅s⋅C⁻²
𝘤⋅g₀⁻¹ft⁻¹lb⁻¹τ⋅2⁻⁴3⋅5⁻⁷ = 3334.3442363371373 [lb⋅in⋅s⋅C⁻²] IPSMeasureSystems.vacuumpermeability — Constantvacuumpermeability(U::UnitSystem) = 𝟏/vacuumpermittivity(U)/(lightspeed(U)*lorentz(U))^2
permeability : [FT²Q⁻²R⁻¹C²], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²R⁻¹C² [μ₀] UnifiedMagnetic permeability in a classical vacuum defined as μ₀ in SI units (H⋅m⁻¹, kg⋅m²⋅C⁻²).
julia> vacuumpermeability(Metric) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [H⋅m⁻¹] Metric
julia> vacuumpermeability(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅2 = 1.25663703976(19) × 10⁻⁶ [H⋅m⁻¹] Conventional
julia> vacuumpermeability(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅2 = 1.25663706194(35) × 10⁻⁶ [H⋅m⁻¹] CODATA
julia> vacuumpermeability(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅2 = 1.25663706212(19) × 10⁻⁶ [H⋅m⁻¹] SI2019
julia> vacuumpermeability(International) # H⋅m⁻¹
Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2560153338456637×10⁻⁶ [H⋅m⁻¹] International
julia> vacuumpermeability(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> vacuumpermeability(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESUMeasureSystems.vacuumpermittivity — Constantvacuumpermittivity(U::UnitSystem) = 𝟏/vacuumpermeability(U)/(lightspeed(U)*lorentz(U))^2
permittivity : [F⁻¹L⁻²Q²R], [F⁻¹L⁻²Q²], [M⁻¹L⁻³T²Q²], [L⁻²T²], [𝟙]
F⁻¹L⁻²Q²R [𝘤⁻²μ₀⁻¹αL⁻²] UnifiedDielectric permittivity constant ε₀ of a classical vacuum (C²⋅N⁻¹⋅m⁻²).
julia> vacuumpermittivity(Metric) # F⋅m⁻¹
𝘤⁻²τ⁻¹2⁶5⁷ = 8.854187817620389×10⁻¹² [F⋅m⁻¹] Metric
julia> vacuumpermittivity(Conventional) # F⋅m⁻¹
𝘤⁻¹α⁻¹RK90⁻¹2⁻¹ = 8.8541879703(14) × 10⁻¹² [F⋅m⁻¹] Conventional
julia> vacuumpermittivity(CODATA) # F⋅m⁻¹
𝘤⁻¹α⁻¹RK⁻¹2⁻¹ = 8.8541878141(24) × 10⁻¹² [F⋅m⁻¹] CODATA
julia> vacuumpermittivity(SI2019) # F⋅m⁻¹
𝘩⁻¹𝘤⁻¹𝘦²α⁻¹2⁻¹ = 8.8541878128(14) × 10⁻¹² [F⋅m⁻¹] SI2019
julia> vacuumpermittivity(International) # F⋅m⁻¹
𝘤⁻²Ωᵢₜ⋅τ⁻¹2⁶5⁷ = 8.85857064059011×10⁻¹² [F⋅m⁻¹] International
julia> vacuumpermittivity(EMU) # abF⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] EMU
julia> vacuumpermittivity(ESU) # statF⋅cm⁻¹
𝟏 = 1.0 [𝟙] ESU
julia> vacuumpermittivity(SI2019)/elementarycharge(SI2019) # 𝘦²⋅eV⁻¹⋅m⁻¹
𝘩⁻¹𝘤⁻¹𝘦⋅α⁻¹2⁻¹ = 5.52634935805(85) × 10⁷ [kg⁻¹m⁻³s²C] SI2019MeasureSystems.electrostatic — Constantelectrostatic(U::UnitSystem) = rationalization(U)/𝟐/τ/vacuumpermittivity(U)
nonstandard : [FL²Q⁻²], [FL²Q⁻²], [ML³T⁻²Q⁻²], [L²T⁻²], [𝟙]
FL²Q⁻²⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [𝘤²μ₀⋅λ⋅αL²] UnifiedElectrostatic proportionality constant kₑ for the Coulomb's law force (N⋅m²⋅C⁻²).
julia> electrostatic(Metric) # N⋅m²⋅C⁻²
𝘤²2⁻⁷5⁻⁷ = 8.987551787368177×10⁹ [m⋅F⁻¹] Metric
julia> electrostatic(CODATA) # N·m²⋅C⁻²
𝘤⋅α⋅RK⋅τ⁻¹ = 8.9875517909(25) × 10⁹ [m⋅F⁻¹] CODATA
julia> electrostatic(SI2019) # N·m²⋅C⁻²
𝘩⋅𝘤⋅𝘦⁻²α⋅τ⁻¹ = 8.9875517923(14) × 10⁹ [m⋅F⁻¹] SI2019
julia> electrostatic(Conventional) # N·m²⋅C⁻²
𝘤⋅α⋅RK90⋅τ⁻¹ = 8.9875516323(14) × 10⁹ [m⋅F⁻¹] Conventional
julia> electrostatic(International) # N·m²⋅C⁻²
𝘤²Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 8.98310515031877×10⁹ [m⋅F⁻¹] International
julia> electrostatic(EMU) # dyn⋅cm²⋅abC⁻²
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [erg⋅g⁻¹] EMU
julia> electrostatic(ESU) # dyn⋅cm²⋅statC⁻²
𝟏 = 1.0 [𝟙] ESU
julia> electrostatic(HLU) # dyn⋅cm²⋅hlC⁻²
τ⁻¹2⁻¹ = 0.07957747154594767 [𝟙] LorentzHeavisideMeasureSystems.magnetostatic — Constantmagnetostatic(U::UnitSystem) = lorentz(U)*biotsavart(U) # electrostatic(U)/lightspeed(U)^2
nonstandard : [FT²Q⁻²], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [μ₀⋅λ⋅αL²] UnifiedMagnetic proportionality constant kₘ for the Ampere's law force (N·s²⋅C⁻²).
julia> magnetostatic(Metric) # H⋅m⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [H⋅m⁻¹] Metric
julia> magnetostatic(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅τ⁻¹ = 1.00000000040(28) × 10⁻⁷ [H⋅m⁻¹] CODATA
julia> magnetostatic(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹ = 1.00000000055(15) × 10⁻⁷ [H⋅m⁻¹] SI2019
julia> magnetostatic(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅τ⁻¹ = 9.9999998275(15) × 10⁻⁸ [H⋅m⁻¹] Conventional
julia> magnetostatic(International) # H⋅m⁻¹
Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 9.995052449037727×10⁻⁸ [H⋅m⁻¹] International
julia> magnetostatic(EMU) # abH⋅m⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> magnetostatic(ESU) # statH⋅m⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> magnetostatic(HLU) # hlH⋅m⁻¹
𝘤⁻²τ⁻¹2⁻⁵5⁻⁴ = 8.85418781762039×10⁻²³ [cm⁻²s²] LorentzHeavisideMeasureSystems.elementarycharge — Constantelementarycharge(U::UnitSystem) = √(𝟐*planck(U)*finestructure(U)/vacuumimpedance(U))
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(α¹ᐟ²τ¹ᐟ²2¹ᐟ² = 0.302822120872(23)) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] UnifiedQuantized elementary charge 𝘦 of a proton or electron 2/(klitzing(U)*josephson(U)) (C).
julia> elementarycharge(SI2019) # C
𝘦 = 1.602176634×10⁻¹⁹ [C] SI2019
julia> elementarycharge(Metric) # C
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.60217663444(12) × 10⁻¹⁹ [C] Metric
julia> elementarycharge(CODATA) # C
RK⁻¹KJ⁻¹2 = 1.6021766207(99) × 10⁻¹⁹ [C] CODATA
julia> elementarycharge(Conventional) # C
RK90⁻¹KJ90⁻¹2 = 1.602176491612271×10⁻¹⁹ [C] Conventional
julia> elementarycharge(International) # C
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.60244090637(12) × 10⁻¹⁹ [C] International
julia> elementarycharge(EMU) # abC
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁵ᐟ²5⁵ᐟ² = 1.60217663444(12) × 10⁻²⁰ [g¹ᐟ²cm¹ᐟ²] EMU
julia> elementarycharge(ESU) # statC
𝘩¹ᐟ²𝘤¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁹ᐟ²5⁹ᐟ² = 4.80320471388(37) × 10⁻¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
julia> elementarycharge(Hartree) # 𝘦
𝟏 = 1.0 [𝘦] HartreeMeasureSystems.faraday — Constantfaraday(U::UnitSystem) = elementarycharge(U)*avogadro(U)
nonstandard : [QN⁻¹], [QN⁻¹], [QN⁻¹], [M¹ᐟ²L¹ᐟ²N⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹N⁻¹]
QN⁻¹⋅(α¹ᐟ²μₑᵤ⋅τ¹ᐟ²2¹ᐟ² = 0.000166122131531(14)) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹Mᵤ⋅ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] UnifiedElectric charge per mole of electrons 𝔉 based on elementary charge (C⋅mol⁻¹).
julia> faraday(SI2019) # C⋅mol⁻¹
NA⋅𝘦 = 96485.33212331001 [C⋅mol⁻¹] SI2019
julia> faraday(Metric) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ² = 96485.332183(37) [C⋅mol⁻¹] Metric
julia> faraday(CODATA) # C⋅mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅KJ⋅2⁻⁵5⁻³ = 96485.33297(60) [C⋅mol⁻¹] CODATA
julia> faraday(Conventional) # C⋅mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅KJ90⋅2⁻⁵5⁻³ = 96485.342448(30) [C⋅mol⁻¹] Conventional
julia> faraday(International) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ² = 96501.247011(37) [C⋅mol⁻¹] International
julia> faraday(InternationalMean) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ²⋅1.0001499490173342 = 96499.800064(37) [C⋅mol⁻¹] InternationalMean
julia> faraday(EMU) # abC⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻³ᐟ²5⁻¹ᐟ² = 9648.5332183(37) [g¹ᐟ²cm¹ᐟ²mol⁻¹] EMU
julia> faraday(ESU) # statC⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤³ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2¹ᐟ²5³ᐟ² = 2.8925574896(11) × 10¹⁴ [g¹ᐟ²cm³ᐟ²s⁻¹mol⁻¹] ESU
julia> faraday(Metric)/kilocalorie(Metric) # kcal⋅(V-g-e)⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻²τ⁻¹ᐟ²2⁻¹¹ᐟ²3⁻²5⁻⁷ᐟ²43 = 23.0454706695(89) [kg⁻¹m⁻²s²C⋅mol⁻¹] Metric
julia> faraday(Metric)/3600 # A⋅h⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻⁹ᐟ²3⁻²5⁻³ᐟ² = 26.801481162(10) [C⋅mol⁻¹] MetricMeasureSystems.conductancequantum — Constantconductancequantum(U::UnitSystem) = 𝟐*elementarycharge(U)^2/planck(U) # 2/klitzing(U)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(α⋅2² = 0.0291894102771(45)) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] UnifiedConductance quantum G₀ is a quantized unit of electrical conductance (S).
julia> conductancequantum(SI2019) # S
𝘩⁻¹𝘦²2 = 7.748091729863649×10⁻⁵ [S] SI2019
julia> conductancequantum(Metric) # S
𝘤⁻¹α⋅τ⁻¹2⁸5⁷ = 7.7480917341(12) × 10⁻⁵ [S] Metric
julia> conductancequantum(Conventional) # S
RK90⁻¹2 = 7.74809186773062×10⁻⁵ [S] Conventional
julia> conductancequantum(CODATA) # S
RK⁻¹2 = 7.7480917310(18) × 10⁻⁵ [S] CODATA
julia> conductancequantum(International) # S
𝘤⁻¹α⋅Ωᵢₜ⋅τ⁻¹2⁸5⁷ = 7.7519270395(12) × 10⁻⁵ [S] International
julia> conductancequantum(InternationalMean) # S
𝘤⁻¹α⋅τ⁻¹2⁸5⁷⋅1.00049 = 7.7518882990(12) × 10⁻⁵ [S] InternationalMean
julia> conductancequantum(EMU) # abS
𝘤⁻¹α⋅τ⁻¹2⁻¹5⁻² = 7.7480917341(12) × 10⁻¹⁴ [cm⁻¹s] EMU
julia> conductancequantum(ESU) # statS
𝘤⋅α⋅τ⁻¹2³5² = 6.9636375713(11) × 10⁷ [cm⋅s⁻¹] ESUMeasureSystems.klitzing — Constantklitzing(U::UnitSystem) = planck(U)/elementarycharge(U)^2
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(α⁻¹2⁻¹ = 68.517999542(10)) [𝘤⋅μ₀⋅λ⋅αL²] UnifiedQuantized Hall resistance RK (Ω).
julia> klitzing(SI2019) # Ω
𝘩⋅𝘦⁻² = 25812.80745930451 [Ω] SI2019
julia> klitzing(Metric) # Ω
𝘤⋅α⁻¹τ⋅2⁻⁷5⁻⁷ = 25812.8074452(40) [Ω] Metric
julia> klitzing(Conventional) # Ω
RK90 = 25812.807 [Ω] Conventional
julia> klitzing(International) # Ω
𝘤⋅α⁻¹Ωᵢₜ⁻¹τ⋅2⁻⁷5⁻⁷ = 25800.036427200(40) [Ω] International
julia> klitzing(CODATA) # Ω
RK = 25812.8074555(59) [Ω] CODATA
julia> klitzing(EMU) # abΩ
𝘤⋅α⁻¹τ⋅2²5² = 2.58128074452(40) × 10¹³ [cm⋅s⁻¹] EMU
julia> klitzing(ESU) # statΩ
𝘤⁻¹α⁻¹τ⋅2⁻²5⁻² = 2.87206216508(44) × 10⁻⁸ [cm⁻¹s] ESUMeasureSystems.josephson — Constantjosephson(U::UnitSystem) = 𝟐*elementarycharge(U)*lorentz(U)/planck(U)
nonstandard : [F⁻¹L⁻¹T⁻¹QC⁻¹], [F⁻¹L⁻¹T⁻¹Q], [M⁻¹L⁻²TQ], [M⁻¹ᐟ²L⁻³ᐟ²T], [M⁻¹ᐟ²L⁻¹ᐟ²]
F⁻¹L⁻¹T⁻¹QC⁻¹⋅(α¹ᐟ²τ⁻¹ᐟ²2³ᐟ² = 0.0963912748286(74)) [ħ⁻¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ⁻¹ᐟ²λ⁻¹ᐟ²] UnifiedJosephson constant KJ relating potential difference to irradiation frequency (Hz⋅V⁻¹).
julia> josephson(SI2019) # Hz⋅V⁻¹
𝘩⁻¹𝘦⋅2 = 4.8359784841698356×10¹⁴ [Hz⋅V⁻¹] SI2019
julia> josephson(Metric) # Hz⋅V⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁹ᐟ²5⁷ᐟ² = 4.83597848549(37) × 10¹⁴ [Hz⋅V⁻¹] Metric
julia> josephson(Conventional) # Hz⋅V⁻¹
KJ90 = 4.835979×10¹⁴ [Hz⋅V⁻¹] Conventional
julia> josephson(CODATA) # Hz⋅V⁻¹
KJ = 4.835978525(30) × 10¹⁴ [Hz⋅V⁻¹] CODATA
julia> josephson(International) # Hz⋅V⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²Vᵢₜ⋅τ⁻¹ᐟ²2⁹ᐟ²5⁷ᐟ² = 4.83757435839(37) × 10¹⁴ [Hz⋅V⁻¹] International
julia> josephson(EMU) # Hz⋅abV⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁻⁷ᐟ²5⁻⁹ᐟ² = 4.83597848549(37) × 10⁶ [g⁻¹ᐟ²cm⁻³ᐟ²s] EMU
julia> josephson(ESU) # Hz⋅statV⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁻³ᐟ²5⁻⁵ᐟ² = 1.44978987700(11) × 10¹⁷ [g⁻¹ᐟ²cm⁻¹ᐟ²] ESUMeasureSystems.magneticfluxquantum — Constantmagneticfluxquantum(U::UnitSystem) = planck(U)/𝟐/elementarycharge(U)/lorentz(U)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(α⁻¹ᐟ²τ¹ᐟ²2⁻³ᐟ² = 10.374382969600(79)) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] UnifiedMagnetic flux quantum Φ₀ is 𝟏/josephson(U) (Wb).
julia> magneticfluxquantum(SI2019) # Wb
𝘩⋅𝘦⁻¹2⁻¹ = 2.0678338484619295×10⁻¹⁵ [Wb] SI2019
julia> magneticfluxquantum(Metric) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.06783384790(16) × 10⁻¹⁵ [Wb] Metric
julia> magneticfluxquantum(Conventional) # Wb
KJ90⁻¹ = 2.0678336278962334×10⁻¹⁵ [Wb] Conventional
julia> magneticfluxquantum(International) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²Vᵢₜ⁻¹τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.06715168784(16) × 10⁻¹⁵ [Wb] International
julia> magneticfluxquantum(InternationalMean) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ²/1.00034 = 2.06713102335(16) × 10⁻¹⁵ [Wb] InternationalMean
julia> magneticfluxquantum(EMU) # Mx
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁷ᐟ²5⁹ᐟ² = 2.06783384790(16) × 10⁻⁷ [Mx] EMU
julia> magneticfluxquantum(ESU) # statWb
𝘩¹ᐟ²𝘤⁻¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2³ᐟ²5⁵ᐟ² = 6.89755126494(53) × 10⁻¹⁸ [g¹ᐟ²cm¹ᐟ²] ESUMeasureSystems.magneton — Constantmagneton(U::UnitSystem) = elementarycharge(U)*planckreduced(U)*lorentz(U)/2electronmass(U)
nonstandard : [FM⁻¹LTQA⁻¹C⁻¹], [L²T⁻¹Q], [L²T⁻¹Q], [M¹ᐟ²L⁵ᐟ²T⁻¹], [M¹ᐟ²L⁷ᐟ²T⁻²]
FM⁻¹LTQA⁻¹C⁻¹⋅(α¹ᐟ²τ¹ᐟ²2⁻¹ᐟ² = 0.151411060436(12)) [ħ³ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²] UnifiedBohr magneton μB natural unit for expressing magnetic moment of electron (J⋅T⁻¹).
julia> magneton(SI2019) # J⋅T⁻¹
𝘤⋅𝘦⋅R∞⁻¹α²τ⁻¹2⁻² = 9.2740100783(28) × 10⁻²⁴ [J⋅T⁻¹] SI2019
julia> magneton(Metric) # J⋅T⁻¹
𝘩¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²τ⁻³ᐟ²2³ᐟ²5⁷ᐟ² = 9.2740100808(36) × 10⁻²⁴ [J⋅T⁻¹] Metric
julia> magneton(CODATA) # J⋅T⁻¹
𝘤⋅R∞⁻¹α²RK⁻¹KJ⁻¹τ⁻¹2⁻¹ = 9.274010001(58) × 10⁻²⁴ [J⋅T⁻¹] CODATA
julia> magneton(Conventional) # J⋅T⁻¹
𝘤⋅R∞⁻¹α²RK90⁻¹KJ90⁻¹τ⁻¹2⁻¹ = 9.2740092541(28) × 10⁻²⁴ [J⋅T⁻¹] Conventional
julia> magneton(International) # J⋅T⁻¹
𝘩¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻³ᐟ²2³ᐟ²5⁷ᐟ² = 9.2755397877(36) × 10⁻²⁴ [J⋅T⁻¹] International
julia> magneton(ESU) # statA⋅cm²
𝘩¹ᐟ²𝘤³ᐟ²R∞⁻¹α⁵ᐟ²τ⁻³ᐟ²2¹³ᐟ²5¹⁷ᐟ² = 2.7802782776(11) × 10⁻¹⁰ [g¹ᐟ²cm⁷ᐟ²s⁻²] ESU
julia> magneton(SI2019)/elementarycharge(SI2019) # eV⋅T⁻¹
𝘤⋅R∞⁻¹α²τ⁻¹2⁻² = 5.7883818060(18) × 10⁻⁵ [m²s⁻¹] SI2019
julia> magneton(Hartree) # 𝘤⋅ħ⋅mₑ⁻¹
2⁻¹ = 0.5 [𝘦] HartreeAstronomical Constants
MeasureSystems.eddington — Constanteddington(U::UnitSystem) = mass(𝟏,U,Cosmological)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²𝘤³R∞⁻¹α²ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁸3⁷ᐟ²5⁶ = 2.804(21) × 10⁸²) [mₑ] UnifiedApproximate number of protons in the Universe as estimated by Eddington (kg or lb).
julia> 𝟐^2^2^3/α # mₚ
α⁻¹2²⁵⁶ = 1.58676846347(24) × 10⁷⁹
julia> eddington(QCD) # mₚ
𝘩⁻²𝘤³R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁸3⁷ᐟ²5⁶ = 1.527(11) × 10⁷⁹ [mₚ] QCD
julia> eddington(Metric) # kg
𝘩⁻¹𝘤²ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁹3⁷ᐟ²5⁶ = 2.555(19) × 10⁵² [kg] Metric
julia> eddington(IAU) # M☉
𝘤³ΩΛ⁻¹ᐟ²H0⁻¹au⁻²kG⁻²τ⁻⁷ᐟ²2³⁷3³⁵ᐟ²5¹⁶ = 1.2847(95) × 10²² [M☉] IAU☉
julia> eddington(Cosmological)
𝟏 = 1.0 [M] CosmologicalMeasureSystems.solarmass — Constantsolarmass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 2.182814(48) × 10⁶⁰) [mₑ] UnifiedSolar mass estimated from gravitational constant estimates (kg or slug).
julia> solarmass(Metric) # kg
𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰ [kg] Metric
julia> solarmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹au³ft⋅lb⁻¹kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.362493(30) × 10²⁹ [slug] British
julia> solarmass(English) # lb
𝘩⁻¹𝘤⁻¹au³lb⁻¹kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 4.383692(97) × 10³⁰ [lbm] English
julia> solarmass(IAUE) # ME
au³kG²GME⁻¹τ²2⁻²⁸3⁻¹⁴5⁻¹⁰ = 332946.04409(67) [ME] IAUE
julia> solarmass(IAUJ) # MJ
au³kG²GMJ⁻¹τ²2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1047.565484(74) [MJ] IAUJ
julia> solarmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 1.188798(26) × 10⁵⁷ [mₚ] QCD
julia> solarmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 1.197448(26) × 10⁵⁷ [𝟙] MetricMeasureSystems.jupitermass — Constantjupitermass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹mP²GMJ⋅τ = 1.898124(42) × 10²⁷,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GMJ⋅τ⋅2⁻¹ = 2.083702(46) × 10⁵⁷) [mₑ] UnifiedJupiter mass estimated from gravitational constant estimates (kg or slug).
julia> jupitermass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GMJ⋅τ = 1.898124(42) × 10²⁷ [kg] Metric
julia> jupitermass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GMJ⋅τ = 1.300628(29) × 10²⁶ [slug] British
julia> jupitermass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GMJ⋅τ = 4.184647(92) × 10²⁷ [lbm] English
julia> jupitermass(IAU) # M☉
au⁻³kG⁻²GMJ⋅τ⁻²2²⁸3¹⁴5¹⁰ = 0.000954594262(68) [M☉] IAU☉
julia> jupitermass(IAUE) # ME
GME⁻¹GMJ = 317.828383(23) [ME] IAUE
julia> jupitermass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GMJ⋅τ⋅2⁻¹ = 1.134820(25) × 10⁵⁴ [mₚ] QCD
julia> jupitermass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GMJ⋅τ⋅2⁻¹ = 1.143077(25) × 10⁵⁴ [𝟙] MetricMeasureSystems.earthmass — Constantearthmass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹mP²GME⋅τ = 5.97217(13) × 10²⁴,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GME⋅τ⋅2⁻¹ = 6.55606(14) × 10⁵⁴) [mₑ] UnifiedEarth mass estimated from gravitational constant estimates (kg or slug).
julia> earthmass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GME⋅τ = 5.97217(13) × 10²⁴ [kg] Metric
julia> earthmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GME⋅τ = 4.092234(90) × 10²³ [slug] British
julia> earthmass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GME⋅τ = 1.316637(29) × 10²⁵ [lbm] English
julia> earthmass(IAU) # M☉
au⁻³kG⁻²GME⋅τ⁻²2²⁸3¹⁴5¹⁰ = 3.0034896577(60) × 10⁻⁶ [M☉] IAU☉
julia> earthmass(IAUJ) # MJ
GME⋅GMJ⁻¹ = 0.00314635210(22) [MJ] IAUJ
julia> earthmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GME⋅τ⋅2⁻¹ = 3.570542(79) × 10⁵¹ [mₚ] QCD
julia> earthmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GME⋅τ⋅2⁻¹ = 3.596523(79) × 10⁵¹ [𝟙] MetricMeasureSystems.lunarmass — Constantlunarmass(U::UnitSystem) = earthmass(U)/μE☾
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 8.06398(18) × 10⁵²) [mₑ] UnifiedLunar mass estimated from μE☾ Earth-Moon mass ratio (kg or slug).
julia> lunarmass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GME⋅τ/81.3005680(30) = 7.34579(16) × 10²² [kg] Metric
julia> lunarmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GME⋅τ/81.3005680(30) = 5.03346(11) × 10²¹ [slug] British
julia> lunarmass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GME⋅τ/81.3005680(30) = 1.619469(36) × 10²³ [lbm] English
julia> lunarmass(IAU) # M☉
au⁻³kG⁻²GME⋅τ⁻²2²⁸3¹⁴5¹⁰/81.3005680(30) = 3.69430341(14) × 10⁻⁸ [M☉] IAU☉
julia> lunarmass(IAUE) # ME
𝟏/81.3005680(30) = 0.01230003707(45) [ME] IAUE
julia> lunarmass(IAUJ) # MJ
GME⋅GMJ⁻¹/81.3005680(30) = 3.87002474(31) × 10⁻⁵ [MJ] IAUJ
julia> lunarmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 4.391780(97) × 10⁴⁹ [mₚ] QCD
julia> lunarmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 4.423736(98) × 10⁴⁹ [𝟙] MetricMeasureSystems.gravity — Constantgravity(U::UnitSystem) = # mass*acceleration/force
gravityforce : [F⁻¹MLT⁻²], [𝟙], [𝟙], [𝟙], [𝟙]
F⁻¹MLT⁻² [g₀] UnifiedGravitational force reference used in technical engineering units (kg⋅m⋅N⁻¹⋅s⁻²).
julia> gravity(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> gravity(Engineering) # m⋅kg⋅N⁻¹⋅s⁻²
g₀ = 9.80665 [kgf⁻¹kg⋅m⋅s⁻²] Engineering
julia> gravity(English) # ft⋅lbm⋅lbf⁻¹⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [lbf⁻¹lbm⋅ft⋅s⁻²] EnglishMeasureSystems.earthradius — Constantearthradius(U::UnitSystem) = sqrt(earthmass(U)*gravitation(U)/gforce(U))
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2 = 1.6509810466(17) × 10¹⁹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] UnifiedApproximate length of standard Earth two-body radius consistent with units (m or ft).
julia> earthradius(KKH) # km
g₀⁻¹ᐟ²GME¹ᐟ²2⁻³5⁻³ = 6375.4163237(64) [km] KKH
julia> earthradius(Nautical) # nm
τ⁻¹2⁵3³5² = 3437.7467707849396 [nm] Nautical
julia> earthradius(IAU) # au
g₀⁻¹ᐟ²au⁻¹GME¹ᐟ² = 4.2617025856(43) × 10⁻⁵ [au] IAU☉MeasureSystems.greatcircle — Constantgreatcircle(U::UnitSystem) = τ*earthradius(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2 = 1.0373419854(11) × 10²⁰) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] UnifiedApproximate length of standard Earth two-body circle consistent with units (m or ft).
julia> greatcircle(KKH) # km
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻³5⁻³ = 40057.922172(40) [km] KKH
julia> greatcircle(Nautical) # nm
2⁵3³5² = 21600.0 [nm] Nautical
julia> greatcircle(IAU) # au
g₀⁻¹ᐟ²au⁻¹GME¹ᐟ²τ = 0.00026777067070(27) [au] IAU☉MeasureSystems.gaussianmonth — Constantgaussianmonth(U::UnitSystem) = τ*sqrt(lunardistance(U)^3/earthmass(U)/gravitation(U))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²GME⁻¹ᐟ²τ²2¹¹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.6987431854323947×10⁶ = 1.8413595336(19) × 10²⁷) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] UnifiedOrbit time defined by lunardistance and earthmass for neglible mass satellite (s).
julia> gaussianmonth(Metric) # s
GME⁻¹ᐟ²τ⋅2⁹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.6987431854323947×10⁶ = 2.3718343493(24) × 10⁶ [s] Metric
julia> gaussianmonth(MPH) # h
GME⁻¹ᐟ²τ⋅2¹ᐟ²3⁵ᐟ²5⁵ᐟ²⋅1.6987431854323947×10⁶ = 658.84287479(66) [h] MPH
julia> gaussianmonth(IAU) # D
GME⁻¹ᐟ²τ⋅2⁻⁵ᐟ²3³ᐟ²5⁵ᐟ²⋅1.6987431854323947×10⁶ = 27.451786450(28) [D] IAU☉MeasureSystems.siderealmonth — Constantsiderealmonth(U::UnitSystem) = gaussianmonth(U)/√(𝟏+lunarmass(IAU))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²GME⁻¹ᐟ²τ²2¹¹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.71963778958(77) × 10⁶ = 1.8640083241(21) × 10²⁷) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] UnifiedOrbit time defined by standard lunardistance and the Earth-Moon system mass (s).
julia> siderealmonth(Metric) # s
GME⁻¹ᐟ²τ⋅2⁹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.71963778958(77) × 10⁶ = 2.4010079997(26) × 10⁶ [s] Metric
julia> siderealmonth(MPH) # h
GME⁻¹ᐟ²τ⋅2¹ᐟ²3⁵ᐟ²5⁵ᐟ²⋅1.71963778958(77) × 10⁶ = 666.94666658(73) [h] MPH
julia> siderealmonth(IAU) # D
GME⁻¹ᐟ²τ⋅2⁻⁵ᐟ²3³ᐟ²5⁵ᐟ²⋅1.71963778958(77) × 10⁶ = 27.789444441(31) [D] IAU☉MeasureSystems.synodicmonth — Constantsynodicmonth(U::UnitSystem) = 𝟏/(𝟏/siderealmonth(U)-𝟏/siderealyear(U))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁸3³5²⋅30.07781546600(36) = 2.0175033912(25) × 10²⁷) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] UnifiedOrbit time defined by siderealmonth and siderealyear of Sun-Earth-Moon system (s).
julia> synodicmonth(Metric) # s
2⁷3³5²⋅30.07781546600(36) = 2.5987232563(31) × 10⁶ [s] Metric
julia> synodicmonth(MPH) # h
2³3⋅30.07781546600(36) = 721.86757118(86) [h] MPH
julia> synodicmonth(IAU) # D
30.07781546600(36) = 30.07781546600(36) [D] IAU☉MeasureSystems.gaussianyear — Constantgaussianyear(U::UnitSystem) = turn(U)/gaussgravitation(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²kG⁻¹τ⋅2¹⁵3⁷5⁵ = 2.45000183355(75) × 10²⁸) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] UnifiedOrbit time defined by gaussgravitation constant kG for neglible mass satellite (s).
julia> gaussianyear(Metric) # s
kG⁻¹2¹⁴3⁷5⁵ = 3.155819598840209×10⁷ [s] Metric
julia> gaussianyear(MPH) # h
kG⁻¹2¹⁰3⁵5³ = 8766.165552333914 [h] MPH
julia> gaussianyear(IAU) # D
kG⁻¹2⁷3⁴5³ = 365.2568980139131 [D] IAU☉MeasureSystems.siderealyear — Constantsiderealyear(U::UnitSystem) = gaussianyear(U)/√(𝟏+earthmass(IAU)+lunarmass(IAU))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²kG⁻¹τ⋅2¹⁵3⁷5⁵⋅1.0000029665466235(62) = 2.45000910160(75) × 10²⁸) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] UnifiedOrbit time defined by gaussgravitation constant kG and Earth-Moon system mass (s).
julia> siderealyear(Metric) # s
kG⁻¹2¹⁴3⁷5⁵⋅1.0000029665466235(62) = 3.155828960726184(20) × 10⁷ [s] Metric
julia> siderealyear(MPH) # h
kG⁻¹2¹⁰3⁵5³⋅1.0000029665466235(62) = 8766.191557572734(54) [h] MPH
julia> siderealyear(IAU) # D
kG⁻¹2⁷3⁴5³⋅1.0000029665466235(62) = 365.2579815655306(23) [D] IAU☉MeasureSystems.jovianyear — Constantjovianyear(U::UnitSystem) = τ*day(U)*√(jupiterdistance(U)^3/solarmass(U)/gravitation(U))/√(𝟏+jupitermass(IAU))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²au⁻³ᐟ²kG⁻¹τ⋅2²⁴3¹⁷ᐟ²5¹⁴⋅1.323131008954(9) × 10⁸ = 2.91113952707(92) × 10²⁹) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] UnifiedOrbit time defined by jupiterdistance and the Sun-Jupiter system mass (s).
julia> jovianyear(Metric) # s
au⁻³ᐟ²kG⁻¹2²³3¹⁷ᐟ²5¹⁴⋅1.323131008954(9) × 10⁸ = 3.74980583633(28) × 10⁸ [s] Metric
julia> jovianyear(MPH) # h
au⁻³ᐟ²kG⁻¹2¹⁹3¹³ᐟ²5¹²⋅1.323131008954(9) × 10⁸ = 104161.2732315(77) [h] MPH
julia> jovianyear(IAU) # D
au⁻³ᐟ²kG⁻¹2¹⁶3¹¹ᐟ²5¹²⋅1.323131008954(9) × 10⁸ = 4340.0530513100(32) [D] IAU☉MeasureSystems.radarmile — Constantradarmile(U::UnitSystem) = 𝟐*nauticalmile(U)/lightspeed(U)
time : [T], [T], [T], [T], [T]
T⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻³3⁻³5⁻² = 9.605018384(10) × 10¹⁵) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] UnifiedUnit of time delay from a two-way nauticalmile radar return (s).
julia> radarmile(Metric)
𝘤⁻¹g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁴3⁻³5⁻² = 1.2372115338(12) × 10⁻⁵ [s] MetricMeasureSystems.hubble — Constanthubble(U::UnitSystem) = time(U,Hubble)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²H0⋅au⁻¹2⁻¹¹3⁻⁴5⁻⁶ = 2.824(18) × 10⁻³⁹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] UnifiedHubble universe expansion frequency parameter.
julia> hubble(Metric)
H0⋅au⁻¹τ⋅2⁻¹⁰3⁻⁴5⁻⁶ = 2.193(14) × 10⁻¹⁸ [Hz] Metric
julia> hubble(Hubble)
𝟏 = 1.0 [T⁻¹] Hubble
julia> hubble(Cosmological)
ΩΛ⁻¹ᐟ²τ¹ᐟ²2⋅3⁻¹ᐟ² = 3.487(14) [T⁻¹] Cosmological
julia> 𝟏/hubble(Metric)/year(Metric)
H0⁻¹aⱼ⁻¹au⋅τ⁻¹2³3⋅5⁴ = 1.4452(90) × 10¹⁰ [𝟙] MetricMeasureSystems.cosmological — Constantcosmological(U::UnitSystem) = 𝟑*darkenergydensity(U)*(hubble(U)/lightspeed(U))^2
fuelefficiency : [L⁻²], [L⁻²], [L⁻²], [L⁻²], [L⁻²]
L⁻²⋅(𝘤⁻²R∞⁻²α⁴ΩΛ⋅H0²au⁻²2⁻²²3⁻⁷5⁻¹² = 1.649(24) × 10⁻⁷⁷) [ħ⁻²𝘤²mₑ²ϕ⁻²g₀⁻²] UnifiedCosmological constant from Einstein's controversial theory expanded on by Hubble.
julia> cosmological(Metric)
𝘤⁻²ΩΛ⋅H0²au⁻²τ²2⁻²⁰3⁻⁷5⁻¹² = 1.106(16) × 10⁻⁵² [m⁻²] Metric
julia> cosmological(Hubble)
ΩΛ⋅3 = 2.067(17) [T⁻²] Hubble
julia> cosmological(Cosmological)
τ⋅2² = 25.132741228718345 [T⁻²] CosmologicalConstants Index
MeasureSystems.UniverseMeasureSystems.avogadroMeasureSystems.biotsavartMeasureSystems.bohrMeasureSystems.boltzmannMeasureSystems.conductancequantumMeasureSystems.cosmologicalMeasureSystems.daltonMeasureSystems.earthmassMeasureSystems.earthradiusMeasureSystems.eddingtonMeasureSystems.einsteinMeasureSystems.electronmassMeasureSystems.electronradiusMeasureSystems.electrostaticMeasureSystems.elementarychargeMeasureSystems.faradayMeasureSystems.gaussgravitationMeasureSystems.gaussianmonthMeasureSystems.gaussianyearMeasureSystems.gravitationMeasureSystems.gravityMeasureSystems.greatcircleMeasureSystems.hartreeMeasureSystems.hubbleMeasureSystems.hyperfineMeasureSystems.josephsonMeasureSystems.jovianyearMeasureSystems.jupitermassMeasureSystems.klitzingMeasureSystems.lightspeedMeasureSystems.lorentzMeasureSystems.loschmidtMeasureSystems.luminousefficacyMeasureSystems.lunarmassMeasureSystems.magneticfluxquantumMeasureSystems.magnetonMeasureSystems.magnetostaticMeasureSystems.molargasMeasureSystems.molarmassMeasureSystems.planckMeasureSystems.planckmassMeasureSystems.planckreducedMeasureSystems.protonmassMeasureSystems.radarmileMeasureSystems.radiationdensityMeasureSystems.rationalizationMeasureSystems.rydbergMeasureSystems.siderealmonthMeasureSystems.siderealyearMeasureSystems.solarmassMeasureSystems.stefanMeasureSystems.synodicmonthMeasureSystems.vacuumimpedanceMeasureSystems.vacuumpermeabilityMeasureSystems.vacuumpermittivityMeasureSystems.wienfrequencyMeasureSystems.wienwavelengthMeasureSystems.mechanicalheatMeasureSystems.sackurtetrodeMeasureSystems.BritishMeasureSystems.CODATAMeasureSystems.ConventionalMeasureSystems.CosmologicalMeasureSystems.CosmologicalQuantumMeasureSystems.EMUMeasureSystems.ESUMeasureSystems.ElectronicMeasureSystems.EngineeringMeasureSystems.EnglishMeasureSystems.FFFMeasureSystems.FPSMeasureSystems.GaussMeasureSystems.GravitationalMeasureSystems.HartreeMeasureSystems.HubbleMeasureSystems.IAUMeasureSystems.IAUEMeasureSystems.IAUJMeasureSystems.IPSMeasureSystems.InternationalMeasureSystems.InternationalMeanMeasureSystems.KKHMeasureSystems.LorentzHeavisideMeasureSystems.MPHMeasureSystems.MTSMeasureSystems.MeridianMeasureSystems.MetricMeasureSystems.NaturalMeasureSystems.NaturalGaussMeasureSystems.NauticalMeasureSystems.PlanckMeasureSystems.PlanckGaussMeasureSystems.QCDMeasureSystems.QCDGaussMeasureSystems.QCDoriginalMeasureSystems.RydbergMeasureSystems.SI1976MeasureSystems.SI2019MeasureSystems.SchrodingerMeasureSystems.StoneyMeasureSystems.Survey