Physics Constants
The following are fundamental constants of physics:
There exists a deep relationship between the fundamental constants, which also makes them very suitable as a basis for UnitSystem
dimensional analysis. All of the formulas on this page are part of the Test
suite to guarantee their universal correctness.
MeasureSystems.Universe
— Constantμₑᵤ, μₚᵤ, μₚₑ, αinv, αG, ΩΛ
Physical measured dimensionless Coupling
values with uncertainty are the electron to proton mass ratio μₑᵤ
, proton to atomic mass ratio μₚᵤ
, proton to electron mass ratio μₚₑ
, inverted fine structure constant αinv
, and the gravitaional coupling constant αG
.
julia> μₑᵤ # electronunit(Universe)
μₑᵤ = 0.000548579909065(16)
julia> μₚᵤ # protonunit(Universe)
μₚᵤ = 1.007276466621(53)
julia> μₚₑ # protonelectron(Universe)
μₑᵤ⁻¹μₚᵤ = 1836.15267343(11)
julia> αinv # 1/finestructure(Universe)
α⁻¹ = 137.035999084(21)
julia> αG # coupling(Universe)
𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²2² = 1.751810(39) × 10⁻⁴⁵
julia> ΩΛ # darkenergydensity(Universe)
ΩΛ = 0.6889(56)
Relativistic Constants
MeasureSystems.lightspeed
— Constantlightspeed(U::UnitSystem) = 𝟏/sqrt(vacuumpermeability(U)*vacuumpermittivity(U))/lorentz(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹ [𝘤] Unified
Speed of light in a vacuum 𝘤
for massless particles (m⋅s⁻¹ or ft⋅s⁻¹).
julia> lightspeed(Metric) # m⋅s⁻¹
𝘤 = 2.99792458×10⁸ [m⋅s⁻¹] Metric
julia> lightspeed(English) # ft⋅s⁻¹
𝘤⋅ft⁻¹ = 9.835710564304461×10⁸ [ft⋅s⁻¹] English
julia> lightspeed(IAU) # au⋅D⁻¹
𝘤⋅au⁻¹2⁷3³5² = 173.1446326742(35) [au⋅D⁻¹] IAU☉
MeasureSystems.planck
— Constantplanck(U::UnitSystem) = turn(x)*planckreduced(x)
action : [FLT], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
FLT⋅(τ = 6.283185307179586) [ħ⋅ϕ] Unified
Planck constant 𝘩
is energy per electromagnetic frequency (J⋅s or ft⋅lb⋅s).
julia> planck(SI2019) # J⋅s
𝘩 = 6.62607015×10⁻³⁴ [J⋅s] SI2019
julia> planck(SI2019)*lightspeed(SI2019) # J⋅m
𝘩⋅𝘤 = 1.9864458571489286×10⁻²⁵ [J⋅m] SI2019
julia> planck(CODATA) # J⋅s
RK⁻¹KJ⁻²2² = 6.626070039(82) × 10⁻³⁴ [J⋅s] CODATA
julia> planck(Conventional) # J⋅s
RK90⁻¹KJ90⁻²2² = 6.626068854361324×10⁻³⁴ [J⋅s] Conventional
julia> planck(SI2019)/elementarycharge(SI2019) # eV⋅s
𝘩⋅𝘦⁻¹ = 4.135667696923859×10⁻¹⁵ [Wb] SI2019
julia> planck(SI2019)*lightspeed(SI2019)/elementarycharge(SI2019) # eV⋅m
𝘩⋅𝘤⋅𝘦⁻¹ = 1.2398419843320026×10⁻⁶ [V⋅m] SI2019
julia> planck(British) # ft⋅lb⋅s
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹ = 4.887138541095932×10⁻³⁴ [lb⋅ft⋅s] British
MeasureSystems.planckreduced
— Constantplanckreduced(U::UnitSystem) = planck(x)/turn(x)
angularmomentum : [FLTA⁻¹], [FLT], [ML²T⁻¹], [ML²T⁻¹], [ML²T⁻¹]
FLTA⁻¹ [ħ] Unified
Reduced Planck constant ħ
is a Planck per radian (J⋅s⋅rad⁻¹ or ft⋅lb⋅s⋅rad⁻¹).
julia> planckreduced(SI2019) # J⋅s⋅rad⁻¹
𝘩⋅τ⁻¹ = 1.0545718176461565×10⁻³⁴ [J⋅s] SI2019
julia> planckreduced(SI2019)*lightspeed(SI2019) # J⋅m⋅rad⁻¹
𝘩⋅𝘤⋅τ⁻¹ = 3.1615267734966903×10⁻²⁶ [J⋅m] SI2019
julia> planckreduced(CODATA) # J⋅s⋅rad⁻¹
RK⁻¹KJ⁻²τ⁻¹2² = 1.054571800(13) × 10⁻³⁴ [J⋅s] CODATA
julia> planckreduced(Conventional) # J⋅s⋅rad⁻¹
RK90⁻¹KJ90⁻²τ⁻¹2² = 1.0545716114388567×10⁻³⁴ [J⋅s] Conventional
julia> planckreduced(SI2019)/elementarycharge(SI2019) # eV⋅s⋅rad⁻¹
𝘩⋅𝘦⁻¹τ⁻¹ = 6.582119569509067×10⁻¹⁶ [Wb] SI2019
julia> planckreduced(SI2019)*lightspeed(SI2019)/elementarycharge(SI2019) # eV⋅m⋅rad⁻¹
𝘩⋅𝘤⋅𝘦⁻¹τ⁻¹ = 1.973269804593025×10⁻⁷ [V⋅m] SI2019
julia> planckreduced(British) # ft⋅lb⋅s⋅rad⁻¹
𝘩⋅g₀⁻¹ft⁻¹lb⁻¹τ⁻¹ = 7.778122563903315×10⁻³⁵ [lb⋅ft⋅s] British
MeasureSystems.planckmass
— Constantplanckmass(U::UnitSystem) = electronmass(U)/sqrt(coupling(U))
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²mP⋅2⁻¹ = 2.389222(26) × 10²²) [mₑ] Unified
Planck mass factor mP
from the gravitational coupling constant αG
(kg or slugs).
juila> planckmass(Metric)*lightspeed(Metric)^2/elementarycharge(Metric) # eV⋅𝘤⁻²
𝘩⁻¹ᐟ²𝘤⁵ᐟ²α⁻¹ᐟ²mP⋅τ¹ᐟ²2⁻⁷ᐟ²5⁻⁷ᐟ² = 1.220890(13) × 10²⁸ [V] Metric
juila> planckmass(Metric) # kg
mP = 2.176434(24) × 10⁻⁸ [kg] Metric
juila> planckmass(Metric)/dalton(Metric) # Da
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅mP⋅2⁻¹ = 1.310679(14) × 10¹⁹ [𝟙] Metric
juila> planckmass(Metric)*lightspeed(Metric)^2/elementarycharge(Metric)/sqrt(𝟐^2*τ) # eV⋅𝘤⁻²
𝘩⁻¹ᐟ²𝘤⁵ᐟ²α⁻¹ᐟ²mP⋅2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.435323(27) × 10²⁷ [V] Metric
julia> planckmass(PlanckGauss) # mP
𝟏 = 1.0 [mP] PlanckGauss
MeasureSystems.gaussgravitation
— Constantgaussgravitation(U::UnitSystem) = sqrt(gravitation(U)*solarmass(U)/astronomicalunit(U)^3)
angularfrequency : [T⁻¹A], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹A⋅(𝘤⁻¹R∞⁻¹α²kG⋅2⁻¹⁵3⁻⁷5⁻⁵ = 2.56456351221(79) × 10⁻²⁸) [ħ⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
Gaussian gravitational constant k
of Newton's laws (Hz or rad⋅D⁻¹).
julia> gaussgravitation(Engineering)
kG⋅τ⋅2⁻¹⁴3⁻⁷5⁻⁵ = 1.990983676471466×10⁻⁷ [s⁻¹rad] Engineering
julia> gaussgravitation(MetricGradian)
kG⋅2⁻¹⁰3⁻⁷5⁻³ = 1.2674995749028348×10⁻⁵ [s⁻¹gon] MetricGradian
julia> gaussgravitation(MetricDegree)
kG⋅2⁻¹¹3⁻⁵5⁻⁴ = 1.1407496174125516×10⁻⁵ [s⁻¹deg] MetricDegree
julia> gaussgravitation(MetricArcminute)
kG⋅2⁻⁹3⁻⁴5⁻³ = 0.0006844497704475308 [s⁻¹amin] MetricArcminute
julia> gaussgravitation(MetricArcsecond)
kG⋅2⁻⁷3⁻³5⁻² = 0.04106698622685187 [s⁻¹asec] MetricArcsecond
juila> gaussgravitation(MPH)
kG⋅τ⋅2⁻¹⁰3⁻⁵5⁻³ = 0.0007167541235297278 [h⁻¹] MPH
julia> gaussgravitation(IAU)
kG⋅τ⋅2⁻⁷3⁻⁴5⁻³ = 0.017202098964713464 [D⁻¹] IAU☉
MeasureSystems.gravitation
— Constantgravitation(U::UnitSystem) = lightspeed(U)*planckreduced(U)/planckmass(U)^2
nonstandard : [FM⁻²L²], [F⁻¹L⁴T⁻⁴], [M⁻¹L³T⁻²], [M⁻¹L³T⁻²], [M⁻¹L³T⁻²]
FM⁻²L²⋅(𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²2² = 1.751810(39) × 10⁻⁴⁵) [ħ⋅𝘤⋅mₑ⁻²ϕ] Unified
Universal gravitational constant G
of Newton's law (m³⋅kg⁻¹⋅s⁻² or ft³⋅slug⁻¹⋅s⁻²).
juila> gravitation(Metric) # m³⋅kg⁻¹⋅s⁻²
𝘩⋅𝘤⋅mP⁻²τ⁻¹ = 6.67430(15) × 10⁻¹¹ [kg⁻¹m³s⁻²] Metric
julia> gravitation(English) # ft³⋅lbm⁻¹⋅s⁻²
𝘩⋅𝘤⋅g₀⁻¹ft⁻²lb⋅mP⁻²τ⁻¹ = 3.322929(73) × 10⁻¹¹ [lbf⋅lbm⁻²ft²] English
julia> gravitation(PlanckGauss)
𝟏 = 1.0 [mP⁻²] PlanckGauss
MeasureSystems.einstein
— Constanteinstein(U::UnitSystem) = 𝟐^2*τ*gravitation(U)/lightspeed(U)^4
nonstandard : [FM⁻²L⁻²T⁴], [F⁻¹], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²]
FM⁻²L⁻²T⁴⋅(𝘩²𝘤⁻²R∞²α⁻⁴mP⁻²τ⋅2⁴ = 4.402779(97) × 10⁻⁴⁴) [ħ⋅𝘤⁻³mₑ⁻²ϕ] Unified
Einstein's gravitational constant from the Einstein field equations (s⋅²⋅m⁻¹⋅kg⁻¹).
julia> einstein(Metric) # s²⋅m⁻¹⋅kg⁻¹
𝘩⋅𝘤⁻³mP⁻²2² = 2.076648(46) × 10⁻⁴³ [N⁻¹] Metric
julia> einstein(IAU) # day²⋅au⁻¹⋅M☉⁻¹
𝘤⁻⁴au⁴kG²τ³2⁻⁴⁰3⁻²⁰5⁻¹⁴ = 8.27497346775(66) × 10⁻¹² [M☉⁻¹au⁻¹D²] IAU☉
Atomic & Nuclear Constants
MeasureSystems.dalton
— Constantdalton(U::UnitSystem) = molarmass(U)/avogadro(U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(μₑᵤ⁻¹ = 1822.888486209(53)) [mₑ] Unified
Atomic mass unit Da
of 1/12 of the C₁₂ carbon-12 atom's mass (kg or slugs).
julia> dalton(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 1.66053906660(51) × 10⁻²⁷ [kg] Metric
julia> dalton(Hartree) # mₑ
μₑᵤ⁻¹ = 1822.888486209(53) [𝟙] Hartree
julia> dalton(QCD) # mₚ
μₚᵤ⁻¹ = 0.992776097862(52) [mₚ] QCD
julia> dalton(Metric)*lightspeed(Metric)^2 # J
𝘩⋅𝘤⋅R∞⋅α⁻²μₑᵤ⁻¹2 = 1.49241808560(46) × 10⁻¹⁰ [J] Metric
julia> dalton(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 9.3149410242(29) × 10⁸ [V] SI2019
julia> dalton(British) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⋅lb⁻¹2 = 1.13783069118(35) × 10⁻²⁸ [slug] British
MeasureSystems.protonmass
— Constantprotonmass(U::UnitSystem) = protonunit(U)*dalton(U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(μₑᵤ⁻¹μₚᵤ = 1836.15267343(11)) [mₑ] Unified
Proton mass mₚ
of subatomic particle with +𝘦
elementary charge (kg or mass).
julia> protonmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 1.67262192369(52) × 10⁻²⁷ [kg] Metric
julia> protonmass(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²μₑᵤ⁻¹μₚᵤ⋅2 = 9.3827208816(29) × 10⁸ [V] SI2019
julia> protonmass(Metric)/dalton(Metric) # Da
μₚᵤ = 1.007276466621(53) [𝟙] Metric
julia> protonmass(Hartree) # mₑ
μₑᵤ⁻¹μₚᵤ = 1836.15267343(11) [𝟙] Hartree
julia> protonmass(QCD) # mₚ
𝟏 = 1.0 [mₚ] QCD
MeasureSystems.electronmass
— Constantelectronmass(U::UnitSystem) = protonmass(U)/protonelectron(U) # αinv^2*R∞*2𝘩/𝘤
mass : [M], [FL⁻¹T²], [M], [M], [M]
M [mₑ] Unified
Electron rest mass mₑ
of subatomic particle with -𝘦
elementary charge (kg or slugs).
julia> electronmass(Metric) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²2 = 9.1093837016(28) × 10⁻³¹ [kg] Metric
julia> electronmass(CODATA) # kg
𝘤⁻¹R∞⋅α⁻²RK⁻¹KJ⁻²2³ = 9.10938355(11) × 10⁻³¹ [kg] CODATA
julia> electronmass(Conventional) # kg
𝘤⁻¹R∞⋅α⁻²RK90⁻¹KJ90⁻²2³ = 9.1093819203(28) × 10⁻³¹ [kg] Conventional
julia> electronmass(International) # kg
𝘩⋅𝘤⁻¹R∞⋅α⁻²Ωᵢₜ⋅Vᵢₜ⁻²2 = 9.1078806534(28) × 10⁻³¹ [kg] International
julia> electronmass(Metric)/dalton(Metric) # Da
μₑᵤ = 0.000548579909065(16) [𝟙] Metric
julia> electronmass(QCD) # mₚ
μₑᵤ⋅μₚᵤ⁻¹ = 0.000544617021487(33) [mₚ] QCD
julia> electronmass(Hartree) # mₑ
𝟏 = 1.0 [𝟙] Hartree
julia> electronmass(Metric)*lightspeed(Metric)^2 # J
𝘩⋅𝘤⋅R∞⋅α⁻²2 = 8.1871057769(25) × 10⁻¹⁴ [J] Metric
julia> electronmass(SI2019)*lightspeed(SI2019)^2/elementarycharge(SI2019) # eV⋅𝘤⁻²
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅α⁻²2 = 510998.95000(16) [V] SI2019
julia> electronmass(English) # lb
𝘩⋅𝘤⁻¹R∞⋅α⁻²lb⁻¹2 = 2.00827533796(62) × 10⁻³⁰ [lbm] English
MeasureSystems.hartree
— Constanthartree(U::UnitSystem) = electronmass(U)/gravity(U)*(lightspeed(U)*finestructure(U))^2
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(α² = 5.3251354520(16) × 10⁻⁵) [𝘤²mₑ⋅g₀⁻¹] Unified
Hartree electric potential energy Eₕ
of the hydrogen atom at ground state is 2R∞*𝘩*𝘤
(J).
julia> hartree(SI2019)/elementarycharge(SI2019) # eV
𝘩⋅𝘤⋅𝘦⁻¹R∞⋅2 = 27.211386245989(52) [V] SI2019
julia> hartree(Metric) # J
𝘩⋅𝘤⋅R∞⋅2 = 4.3597447222072(83) × 10⁻¹⁸ [J] Metric
julia> hartree(CGS) # erg
𝘩⋅𝘤⋅R∞⋅2⁸5⁷ = 4.3597447222072(83) × 10⁻¹¹ [erg] Gauss
julia> hartree(Metric)*avogadro(Metric)/kilo # kJ⋅mol⁻¹
𝘤²α²μₑᵤ⋅2⁻⁶5⁻⁶ = 2625.49964038(81) [J⋅mol⁻¹] Metric
julia> hartree(Metric)*avogadro(Metric)/kilocalorie(Metric) # kcal⋅mol⁻¹
𝘤²α²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁸3⁻²5⁻⁷43 = 627.09920344(19) [mol⁻¹] Metric
julia> 𝟐*rydberg(CGS) # Eₕ/𝘩/𝘤/100 cm⁻¹
R∞⋅2⁻¹5⁻² = 219474.63136320(42) [cm⁻¹] Gauss
julia> hartree(Metric)/planck(Metric) # Hz
𝘤⋅R∞⋅2 = 6.579683920502(13) × 10¹⁵ [Hz] Metric
julia> hartree(Metric)/boltzmann(Metric) # K
kB⁻¹NA⁻¹𝘤²α²μₑᵤ⋅2⁻³5⁻³ = 315775.024913(97) [K] Metric
In a Gaussian unit system where 4π*ε₀ == 1
the Hartree energy is 𝘦^2/a₀
.
MeasureSystems.rydberg
— Constantrydberg(U::UnitSystem) = hartree(U)/2planck(U)/lightspeed(U) # Eₕ/2𝘩/𝘤
wavenumber : [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹⋅(α²τ⁻¹2⁻¹ = 4.2376081491(13) × 10⁻⁶) [ħ⁻¹𝘤⋅mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Rydberg constant R∞
is lowest energy photon capable of ionizing atom at ground state (m⁻¹).
julia> rydberg(Metric) # m⁻¹
R∞ = 1.0973731568160(21) × 10⁷ [m⁻¹] Metric
The Rydberg constant for hydrogen RH
is R∞*mₚ/(mₑ+mₚ)
(m⁻¹).
julia> rydberg(Metric)*protonmass(Metric)/(electronmass(Metric)+protonmass(Metric)) # m⁻¹
𝘩⋅𝘤⁻¹R∞²α⁻²μₑᵤ⁻¹μₚᵤ⋅2⋅5.9753831112(19) × 10²⁶ = 1.09677583403(48) × 10⁷ [m⁻¹] Metric
Rydberg unit of photon energy Ry
is 𝘩*𝘤*R∞
or Eₕ/2
(J).
julia> hartree(Metric)/2 # J
𝘩⋅𝘤⋅R∞ = 2.1798723611036(42) × 10⁻¹⁸ [J] Metric
julia> hartree(SI2019)/𝟐/elementarycharge(SI2019) # eV
𝘩⋅𝘤⋅𝘦⁻¹R∞ = 13.605693122994(26) [V] SI2019
Rydberg photon frequency 𝘤*R∞
or Eₕ/2𝘩
(Hz).
julia> lightspeed(Metric)*rydberg(Metric) # Hz
𝘤⋅R∞ = 3.2898419602509(63) × 10¹⁵ [Hz] Metric
Rydberg wavelength 1/R∞
(m).
julia> 𝟏/rydberg(Metric) # m
R∞⁻¹ = 9.112670505824(17) × 10⁻⁸ [m] Metric
julia> 𝟏/rydberg(Metric)/τ # m⋅rad⁻¹
R∞⁻¹τ⁻¹ = 1.4503265557696(28) × 10⁻⁸ [m] Metric
Precision measurements of the Rydberg constants are within a relative standard uncertainty of under 2 parts in 10¹², and is chosen to constrain values of other physical constants.
MeasureSystems.bohr
— Constantbohr(U::UnitSystem) = planckreduced(U)*gravity(U)/electronmass(U)/lightspeed(U)/finestructure(U)
angularlength : [LA⁻¹], [L], [L], [L], [L]
LA⁻¹⋅(α⁻¹ = 137.035999084(21)) [ħ⋅𝘤⁻¹mₑ⁻¹g₀] Unified
Bohr radius of the hydrogen atom in its ground state a₀
(m).
julia> bohr(Metric) # m
R∞⁻¹α⋅τ⁻¹2⁻¹ = 5.29177210902(81) × 10⁻¹¹ [m] Metric
julia> bohr(IPS) # in
R∞⁻¹α⋅ft⁻¹τ⁻¹2⋅3 = 2.08337484607(32) × 10⁻⁹ [in] IPS
julia> bohr(Hartree) # a₀
𝟏 = 1.0 [a₀] Hartree
MeasureSystems.electronradius
— Constantelectronradius(U::UnitSystem) = finestructure(U)*planckreduced(U)*gravity(U)/electronmass(U)/lightspeed(U)
angularlength : [LA⁻¹], [L], [L], [L], [L]
LA⁻¹⋅(α = 0.0072973525693(11)) [ħ⋅𝘤⁻¹mₑ⁻¹g₀] Unified
Classical electron radius or Lorentz radius or Thomson scattering length (m).
julia> electronradius(Metric) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] Metric
julia> electronradius(CODATA) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] CODATA
julia> electronradius(Conventional) # m
R∞⁻¹α³τ⁻¹2⁻¹ = 2.8179403262(13) × 10⁻¹⁵ [m] Conventional
julia> electronradius(Hartree) # a₀
α² = 5.3251354520(16) × 10⁻⁵ [a₀] Hartree
MeasureSystems.hyperfine
— Constanthyperfine(U::UnitSystem) = frequency(ΔνCs = 9.19263177×10⁹,U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹ΔνCs⋅R∞⁻¹α²τ⁻¹2⁻¹ = 1.18409248138(36) × 10⁻¹¹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Unperturbed groundstate hyperfine transition frequency ΔνCs
of caesium-133 atom (Hz).
julia> hyperfine(Metric) # Hz
ΔνCs = 9.19263177×10⁹ [Hz] Metric
Thermodynamic Constants
MeasureSystems.molarmass
— Constantmolarmass(U::UnitSystem) = avogadro(U)*electronmass(U)/electronunit(U)
molarmass : [MN⁻¹], [FL⁻¹T²N⁻¹], [MN⁻¹], [MN⁻¹], [MN⁻¹]
MN⁻¹ [Mᵤ] Unified
Molar mass constant Mᵤ
is the ratio of the molarmass
and relativemass
of a chemical.
julia> molarmass(CGS) # g⋅mol⁻¹
𝟏 = 1.0 [g⋅mol⁻¹] Gauss
julia> molarmass(Metric) # kg⋅mol⁻¹
2⁻³5⁻³ = 0.001 [kg⋅mol⁻¹] Metric
julia> molarmass(SI2019) # kg⋅mol⁻¹
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2 = 0.00099999999966(31) [kg⋅mol⁻¹] SI2019
julia> molarmass(International) # kg⋅mol⁻¹
Ωᵢₜ⋅Vᵢₜ⁻²2⁻³5⁻³ = 0.0009998350000179567 [kg⋅mol⁻¹] International
MeasureSystems.avogadro
— Constantavogadro(U::UnitSystem) = molargas(x)/boltzmann(x) # Mᵤ/dalton(x)
nonstandard : [N⁻¹], [N⁻¹], [N⁻¹], [N⁻¹], [N⁻¹]
N⁻¹⋅(μₑᵤ = 0.000548579909065(16)) [mₑ⁻¹Mᵤ] Unified
Avogadro NA
is molarmass(x)/dalton(x)
number of atoms in a 12 g sample of C₁₂.
julia> avogadro(SI2019) # mol⁻¹
NA = 6.02214076×10²³ [mol⁻¹] SI2019
julia> avogadro(Metric) # mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³ = 6.0221407621(19) × 10²³ [mol⁻¹] Metric
julia> avogadro(CODATA) # mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅RK⋅KJ²2⁻⁶5⁻³ = 6.022140863(75) × 10²³ [mol⁻¹] CODATA
julia> avogadro(Conventional) # mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅RK90⋅KJ90²2⁻⁶5⁻³ = 6.0221419396(19) × 10²³ [mol⁻¹] Conventional
julia> avogadro(English) # lb-mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅lb⋅2⁻¹ = 2.73159710074(84) × 10²⁶ [lb-mol⁻¹] English
julia> avogadro(British) # slug-mol⁻¹
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅g₀⋅ft⁻¹lb⋅2⁻¹ = 8.7886537756(27) × 10²⁷ [slug-mol⁻¹] British
MeasureSystems.boltzmann
— Constantboltzmann(U::UnitSystem) = molargas(x)/avogadro(x)
entropy : [FLΘ⁻¹], [FLΘ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹], [ML²T⁻²Θ⁻¹]
FLΘ⁻¹ [kB] Unified
Boltzmann constant kB
is the entropy amount of a unit number microstate permutation.
julia> boltzmann(SI2019) # J⋅K⁻¹
kB = 1.380649×10⁻²³ [J⋅K⁻¹] SI2019
julia> boltzmann(Metric) # J⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 1.38064899953(43) × 10⁻²³ [J⋅K⁻¹] Metric
julia> boltzmann(SI2019)/elementarycharge(SI2019) # eV⋅K⁻¹
kB⋅𝘦⁻¹ = 8.617333262145179×10⁻⁵ [V⋅K⁻¹] SI2019
julia> boltzmann(SI2019)/planck(SI2019) # Hz⋅K⁻¹
kB⋅𝘩⁻¹ = 2.0836619123327576×10¹⁰ [Hz⋅K⁻¹] SI2019
julia> boltzmann(CGS) # erg⋅K⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2¹¹5¹⁰ = 1.38064899953(43) × 10⁻¹⁶ [erg⋅K⁻¹] Gauss
julia> boltzmann(SI2019)/calorie(SI2019) # calᵢₜ⋅K⁻¹
kB⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 3.2976728498006145×10⁻²⁴ [K⁻¹] SI2019
julia> boltzmann(SI2019)*°R/calorie(SI2019) # calᵢₜ⋅°R⁻¹
kB⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻⁴43 = 1.832040472111452×10⁻²⁴ [K⁻¹] SI2019
julia> boltzmann(Brtish) # ft⋅lb⋅°R⁻¹
kB⋅NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹g₀⁻¹ft⁻¹lb⁻¹2⁴3⁻²5⁴ = 5.6573024638(17) × 10⁻²⁴ [lb⋅ft⋅°R⁻¹] British
julia> boltzmann(SI2019)/planck(SI2019)/lightspeed(SI2019) # m⁻¹⋅K⁻¹
kB⋅𝘩⁻¹𝘤⁻¹ = 69.50348004861274 [m⁻¹K⁻¹] SI2019
julia> avogadro(SI2019)*boltzmann(SI2019)/calorie(SI2019) # calᵢₜ⋅mol⁻¹⋅K⁻¹
kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 [K⁻¹mol⁻¹] SI2019
julia> dB(boltzmann(SI2019)) # dB(W⋅K⁻¹⋅Hz⁻¹)
dB(kB) = -228.59916717321767 [dB(kg⋅m²s⁻²K⁻¹)] SI2019
MeasureSystems.molargas
— Constantmolargas(U::UnitSystem) = boltzmann(x)*avogadro(x)
molarentropy : [FLΘ⁻¹N⁻¹], [FLΘ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹], [ML²T⁻²Θ⁻¹N⁻¹]
FLΘ⁻¹N⁻¹⋅(μₑᵤ = 0.000548579909065(16)) [kB⋅mₑ⁻¹Mᵤ] Unified
Universal gas constant Rᵤ
is factored into specific gasconstant(x)*molarmass(x)
values.
julia> molargas(SI2019) # J⋅K⁻¹⋅mol⁻¹
kB⋅NA = 8.31446261815324 [J⋅K⁻¹mol⁻¹] SI2019
julia> molargas(English)/𝟐^4/𝟑^2 # psi⋅ft³⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅g₀⁻¹ft⁻¹2⁻¹3⁻⁴5⁴ = 10.731577089016287 [lbf⋅ft⋅°R⁻¹lb-mol⁻¹] English
julia> molargas(English)/atmosphere(English) # atm⋅ft³⋅R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅ft⁻³lb⋅atm⁻¹2³3⁻²5⁴ = 0.7302405072952731 [ft³°R⁻¹lb-mol⁻¹] English
julia> molargas(English)/thermalunit(English) # BTU⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 [°R⁻¹lb-mol⁻¹] English
julia> molargas(Metric)/atmosphere(Metric) # atm⋅m³⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅atm⁻¹ = 8.205736608095969×10⁻⁵ [m³K⁻¹mol⁻¹] Metric
julia> molargas(Metric)/torr(Metric) # m³⋅torr⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅atm⁻¹2³5⋅19 = 0.062363598221529364 [m³K⁻¹mol⁻¹] Metric
julia> molargas(English)/torr(English) # ft³⋅torr⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅ft⁻³lb⋅atm⁻¹2⁶3⁻²5⁵19 = 554.9827855444075 [ft³°R⁻¹lb-mol⁻¹] English
julia> molargas(CGS) # erg⋅K⁻¹⋅mol⁻¹
kB⋅NA⋅2⁷5⁷ = 8.31446261815324×10⁷ [erg⋅K⁻¹mol⁻¹] Gauss
julia> molargas(English) # ft⋅lb⋅°R⁻¹⋅lb-mol⁻¹
kB⋅NA⋅g₀⁻¹ft⁻¹2³3⁻²5⁴ = 1545.3471008183453 [lbf⋅ft⋅°R⁻¹lb-mol⁻¹] English
julia> molargas(British) # ft⋅lb⋅°R⁻¹⋅slug-mol⁻¹
kB⋅NA⋅ft⁻²2³3⁻²5⁴ = 49720.07265826846 [lb⋅ft⋅°R⁻¹slug-mol⁻¹] British
julia> molargas(SI1976) # J⋅K⁻¹⋅mol⁻¹ (US1976 Standard Atmosphere)
8.31432 = 8.31432 [kg⋅m²s⁻²K⁻¹mol⁻¹] SI1976
MeasureSystems.loschmidt
— Constantloschmidt(U::UnitSystem) = atmosphere(U)/boltzmann(U)/temperature(T₀,SI2019,U)
numberdensity : [L⁻³], [L⁻³], [L⁻³], [L⁻³], [L⁻³]
L⁻³⋅(kB⁻¹R∞⁻³α⁶T₀⁻¹atm⋅τ⁻³2⁻³ = 1.5471467610(14) × 10⁻¹²) [ħ⁻³𝘤³mₑ³ϕ⁻³g₀⁻³] Unified
Number of molecules (number density) of an ideal gas in a unit volume (m⁻³ or ft⁻³).
julia> loschmidt(SI2019) # m⁻³
kB⁻¹T₀⁻¹atm = 2.686780111798444×10²⁵ [m⁻³] SI2019
julia> loschmidt(Metric,atm,T₀) # m⁻³
kB⁻¹NA⁻¹𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅2⁻⁴5⁻³ = 2.68678011272(83) × 10²⁵ [m⁻³] Metric
julia> loschmidt(Conventional,atm,T₀) # m⁻³
kB⁻¹NA⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅RK90⋅KJ90²2⁻⁶5⁻³ = 2.68678063809(83) × 10²⁵ [m⁻³] Conventional
julia> loschmidt(CODATA,atm,T₀) # m⁻³
𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅RK⋅KJ²Rᵤ2014⁻¹2⁻⁶5⁻³ = 2.6867811(16) × 10²⁵ [m⁻³] CODATA
julia> loschmidt(SI1976,atm,T₀) # m⁻³
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅T₀⁻¹atm⋅2⁻⁴5⁻³/8.31432 = 2.68682619991(83) × 10²⁵ [m⁻³] SI1976
julia> loschmidt(English) # ft⁻³
kB⁻¹ft³T₀⁻¹atm = 7.608114025223316×10²³ [ft⁻³] English
julia> loschmidt(IAU) # au⁻³
kB⁻¹au³T₀⁻¹atm = 8.99514898792(54) × 10⁵⁸ [au⁻³] IAU☉
MeasureSystems.sackurtetrode
— Functionsackurtetrode(U::UnitSystem,P=atm,T=𝟏,m=Da) = log(kB*T/P*sqrt(m*kB*T/τ/ħ^2)^3)+5/2
dimensionless : [𝟙], [𝟙], [𝟙], [𝟙], [𝟙]
log(FL⁻²Θ⁻⁵ᐟ²A³ᐟ²⋅(μₑᵤ⁻³ᐟ²atm⁻¹τ⁻³ᐟ²exp(2⁻¹5) = 0.594141574194(26)))
Ideal gas entropy density for pressure P
, temperature T
, atomic mass m
(dimensionless).
julia> sackurtetrode(Metric)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(SI2019)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(Conventional)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(CODATA)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴atm⁻¹τ³ᐟ²2²³ᐟ²5¹⁵ᐟ²⋅12.182493960703473) = -1.1648705244 ± 1.2e-9
julia> sackurtetrode(SI2019,𝟏𝟎^5)
log(kB⁵ᐟ²NA⁵ᐟ²𝘩⋅𝘤⁻⁴R∞⁴α⁻⁸μₑᵤ⁻⁴τ³ᐟ²2¹³ᐟ²5⁵ᐟ²⋅12.182493960703473) = -1.1517075379 ± 1.2e-9
MeasureSystems.mechanicalheat
— Functionmechanicalheat(U::UnitSystem) = molargas(U)/molargas(Metric)*calorie(Metric)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
Heat to raise 1 mass
unit of water by 1 temperature
unit, or kB⋅NA⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻²3⁻²5⁻¹43 = 1.9859050081929637 mechanicalheat
per molaramount
per temperature
units (J or ft⋅lb).
julia> mechanicalheat(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 4.186737323211057 [J] Metric
julia> mechanicalheat(English) # ft⋅lb
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 778.1576129990752 [lbf⋅ft] English
julia> mechanicalheat(British) # ft⋅lb
ft⁻²Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 25036.480825188257 [lb⋅ft] British
MeasureSystems.stefan
— Constantstefan(U::UnitSystem) = τ^5/𝟐^4*boltzmann(U)^4/(𝟑*𝟓*planck(U)^3*lightspeed(U)^2)
nonstandard : [FL⁻¹T⁻¹Θ⁻⁴], [FL⁻¹T⁻¹Θ⁻⁴], [MT⁻³Θ⁻⁴], [MT⁻³Θ⁻⁴], [MT⁻³Θ⁻⁴]
FL⁻¹T⁻¹Θ⁻⁴⋅(τ²2⁻⁴3⁻¹5⁻¹ = 0.16449340668482262) [kB⁴ħ⁻³𝘤⁻²ϕ⁻³] Unified
Stefan-Boltzmann proportionality σ
of black body radiation (W⋅m⁻²⋅K⁻⁴ or ?⋅ft⁻²⋅°R⁻⁴).
julia> stefan(SI2019) # W⋅m⁻²⋅K⁻⁴
kB⁴𝘩⁻³𝘤⁻²τ⁵2⁻⁴3⁻¹5⁻¹ = 5.670374419184431×10⁻⁸ [W⋅m⁻²K⁻⁴] SI2019
julia> stefan(Metric) # W⋅m⁻²⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴τ⁵2¹²3⁻¹5¹¹ = 5.6703744114(70) × 10⁻⁸ [W⋅m⁻²K⁻⁴] Metric
julia> stefan(Conventional) # W⋅m⁻²⋅K⁻⁴
kB⁴NA⁴𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴RK90⁻¹KJ90⁻²τ⁵2¹⁴3⁻¹5¹¹ = 5.6703733026(70) × 10⁻⁸ [W⋅m⁻²K⁻⁴] Conventional
julia> stefan(CODATA) # W⋅m⁻²⋅K⁻⁴
𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴RK⁻¹KJ⁻²Rᵤ2014⁴τ⁵2¹⁴3⁻¹5¹¹ = 5.670367(13) × 10⁻⁸ [W⋅m⁻²K⁻⁴] CODATA
julia> stefan(Metric)*day(Metric)/(calorie(Metric)*100^2) # cal⋅cm⁻²⋅day⁻¹⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴Ωᵢₜ⋅Vᵢₜ⁻²τ⁵2¹⁷5¹²43 = 0.0011701721683(14) [m⁻²K⁻⁴] Metric
julia> stefan(English) # lb⋅s⁻¹⋅ft⁻³⋅°R⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁶R∞⁴α⁻⁸μₑᵤ⁻⁴g₀⁻¹ft⋅lb⁻¹τ⁵2¹²3⁻⁹5¹⁵ = 3.7012656963(46) × 10⁻¹⁰ [lbf⋅ft⁻¹s⁻¹°R⁻⁴] English
MeasureSystems.radiationdensity
— Constantradiationdensity(U::UnitSystem) = 𝟐^2*stefan(U)/lightspeed(U)
nonstandard : [FL⁻²Θ⁻⁴], [FL⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴], [ML⁻¹T⁻²Θ⁻⁴]
FL⁻²Θ⁻⁴⋅(τ²2⁻²3⁻¹5⁻¹ = 0.6579736267392905) [kB⁴ħ⁻³𝘤⁻³ϕ⁻³] Unified
Raditation density constant of black body radiation (J⋅m⁻³⋅K⁻⁴ or lb⋅ft⁻²⋅°R⁻⁴).
julia> radiationdensity(Metric) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴τ⁵2¹⁴3⁻¹5¹¹ = 7.5657332399(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] Metric
julia> radiationdensity(SI2019) # J⋅m⁻³⋅K⁻⁴
kB⁴𝘩⁻³𝘤⁻³τ⁵2⁻²3⁻¹5⁻¹ = 7.565733250280007×10⁻¹⁶ [J⋅m⁻³K⁻⁴] SI2019
julia> radiationdensity(Conventional) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴RK90⁻¹KJ90⁻²τ⁵2¹⁶3⁻¹5¹¹ = 7.5657317605(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] Conventional
julia> radiationdensity(CODATA) # J⋅m⁻³⋅K⁻⁴
𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴RK⁻¹KJ⁻²Rᵤ2014⁴τ⁵2¹⁶3⁻¹5¹¹ = 7.565723(17) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] CODATA
julia> radiationdensity(International) # J⋅m⁻³⋅K⁻⁴
kB⁴NA⁴𝘩⋅𝘤⁻⁷R∞⁴α⁻⁸μₑᵤ⁻⁴Ωᵢₜ⋅Vᵢₜ⁻²τ⁵2¹⁴3⁻¹5¹¹ = 7.5644848940(93) × 10⁻¹⁶ [J⋅m⁻³K⁻⁴] International
MeasureSystems.wienwavelength
— Constantwienwavelength(U::UnitSystem) = planck(U)*lightspeed(U)/boltzmann(U)/(𝟓+W₀(-𝟓*exp(-𝟓)))
nonstandard : [LΘ], [LΘ], [LΘ], [LΘ], [LΘ]
LΘ⋅(τ/4.965114231744276 = 1.2654664150541133) [kB⁻¹ħ⋅𝘤⋅ϕ] Unified
Wien wavelength displacement law constant based on Lambert W₀
evaluation (m⋅K or ft⋅°R).
julia> wienwavelength(Metric) # m⋅K
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³/4.965114231744276 = 0.00289777195618(89) [m⋅K] Metric
julia> wienwavelength(SI2019) # m⋅K
kB⁻¹𝘩⋅𝘤/4.965114231744276 = 0.0028977719551851727 [m⋅K] SI2019
julia> wienwavelength(Conventional) # m⋅K
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅2⁻⁴5⁻³/4.965114231744276 = 0.00289777195618(89) [m⋅K] Conventional
julia> wienwavelength(CODATA) # m⋅K
𝘤²R∞⁻¹α²μₑᵤ⋅Rᵤ2014⁻¹2⁻⁴5⁻³/4.965114231744276 = 0.0028977729(17) [m⋅K] CODATA
julia> wienwavelength(English) # ft⋅°R
kB⁻¹NA⁻¹𝘤²R∞⁻¹α²μₑᵤ⋅ft⁻¹2⁻⁴3²5⁻⁴/4.965114231744276 = 0.0171128265129(53) [ft⋅°R] English
MeasureSystems.wienfrequency
— Constantwienfrequency(U::UnitSystem) = (𝟑+W₀(-𝟑*exp(-𝟑)))*boltzmann(U)/planck(U)
nonstandard : [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹], [T⁻¹Θ⁻¹]
T⁻¹Θ⁻¹⋅(τ⁻¹⋅2.8214393721220787 = 0.44904602270732236) [kB⋅ħ⁻¹ϕ⁻¹] Unified
Wien frequency radiation law constant based on Lambert W₀
evaluation (Hz⋅K⁻¹).
julia> wienfrequency(Metric) # Hz⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅2.8214393721220787 = 5.8789257556(18) × 10¹⁰ [Hz⋅K⁻¹] Metric
julia> wienfrequency(SI2019) # Hz⋅K⁻¹
kB⋅𝘩⁻¹⋅2.8214393721220787 = 5.8789257576468254×10¹⁰ [Hz⋅K⁻¹] SI2019
julia> wienfrequency(Conventional) # Hz⋅K⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅2.8214393721220787 = 5.8789257556(18) × 10¹⁰ [Hz⋅K⁻¹] Conventional
julia> wienfrequency(CODATA) # Hz⋅K⁻¹
𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹Rᵤ2014⋅2⁴5³⋅2.8214393721220787 = 5.8789238(34) × 10¹⁰ [Hz⋅K⁻¹] CODATA
julia> wienfrequency(English) # Hz⋅°R⁻¹
kB⋅NA⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴⋅2.8214393721220787 = 3.2660698642(10) × 10¹⁰ [Hz⋅°R⁻¹] English
MeasureSystems.luminousefficacy
— Constantluminousefficacy(U::UnitSystem) = Kcd*power(U)
luminousefficacy(U::UnitSystem{𝟏}) = 𝟏
luminousefficacy : [F⁻¹L⁻¹TJ], [F⁻¹L⁻¹TJ], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J], [M⁻¹L⁻²T³J]
F⁻¹L⁻¹TJ [Kcd] Unified
Luminous efficacy of monochromatic radiation Kcd
of frequency 540 THz (lm⋅W⁻¹).
julia> luminousefficacy(Metric) # lm⋅W⁻¹
Kcd = 683.01969009009 [lm⋅W⁻¹] Metric
julia> luminousefficacy(CODATA) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK⋅KJ²2⁻² = 683.0197015(85) [lm⋅W⁻¹] CODATA
julia> luminousefficacy(Conventional) # lm⋅W⁻¹
𝘩⋅Kcd⋅RK90⋅KJ90²2⁻² = 683.0198236454071 [lm⋅W⁻¹] Conventional
julia> luminousefficacy(International) # lm⋅W⁻¹
Kcd⋅Ωᵢₜ⁻¹Vᵢₜ² = 683.1324069249656 [lm⋅W⁻¹] International
julia> luminousefficacy(British) # lm⋅s³⋅slug⋅ft⁻²
Kcd⋅g₀⋅ft⋅lb = 926.0503548878947 [lb⁻¹ft⁻¹s⋅lm] British
Electromagnetic Constants
MeasureSystems.rationalization
— Constantrationalization(U::UnitSystem) = spat(U)*biotsavart(U)/vacuumpermeability(U)/lorentz(U)
demagnetizingfactor : [R], [𝟙], [𝟙], [𝟙], [𝟙]
R [λ] Unified
Constant of magnetization and polarization density or spat(U)*coulomb(U)*permittivity(U)
.
julia> rationalization(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> rationalization(Gauss)
τ⋅2 = 12.566370614359172 [𝟙] Gauss
MeasureSystems.lorentz
— Constantlorentz(U::UnitSystem) = spat(U)*biotsavart(U)/vacuumpermeability(U)/rationalization(U)
nonstandard : [C⁻¹], [𝟙], [𝟙], [𝟙], [𝟙]
C⁻¹ [αL] Unified
Electromagnetic proportionality constant αL
for the Lorentz's law force (dimensionless).
julia> lorentz(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> lorentz(LorentzHeaviside)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
julia> lorentz(Gauss)
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] Gauss
MeasureSystems.biotsavart
— Constantbiotsavart(U::UnitSystem) = vacuumpermeability(U)*lorentz(U)*rationalization(U)/𝟐/τ
nonstandard : [FT²Q⁻²C], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²C⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [μ₀⋅λ⋅αL] Unified
Magnetostatic proportionality constant αB
for the Biot-Savart's law (H/m).
julia> biotsavart(Metric) # H⋅m⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [H⋅m⁻¹] Metric
julia> biotsavart(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅τ⁻¹ = 1.00000000040(28) × 10⁻⁷ [H⋅m⁻¹] CODATA
julia> biotsavart(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹ = 1.00000000055(15) × 10⁻⁷ [H⋅m⁻¹] SI2019
julia> biotsavart(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅τ⁻¹ = 9.9999998275(15) × 10⁻⁸ [H⋅m⁻¹] Conventional
julia> biotsavart(International) # H⋅m⁻¹
Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 9.995052449037727×10⁻⁸ [H⋅m⁻¹] International
julia> biotsavart(InternationalMean) # H⋅m⁻¹
2⁻⁷5⁻⁷/1.00049 = 9.995102399824086×10⁻⁸ [H⋅m⁻¹] InternationalMean
julia> biotsavart(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> biotsavart(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> biotsavart(Gauss) # abH⋅cm⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] Gauss
julia> biotsavart(HLU) # hlH⋅cm⁻¹
𝘤⁻¹τ⁻¹2⁻³5⁻² = 2.654418729438073×10⁻¹² [cm⁻¹s] LorentzHeaviside
MeasureSystems.vacuumimpedance
— Constantvacuumimpedance(U::UnitSystem) = vacuumpermeability(U)*lightspeed(U)*rationalization(U)*lorentz(U)^2
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻² [𝘤⋅μ₀⋅λ⋅αL²] Unified
Vacuum impedance of free space Z₀
is magnitude ratio of electric to magnetic field (Ω).
julia> vacuumimpedance(Metric) # Ω
𝘤⋅τ⋅2⁻⁶5⁻⁷ = 376.73031346177066 [Ω] Metric
julia> vacuumimpedance(Conventional) # Ω
α⋅RK90⋅2 = 376.730306964(58) [Ω] Conventional
julia> vacuumimpedance(CODATA) # Ω
α⋅RK⋅2 = 376.73031361(10) [Ω] CODATA
julia> vacuumimpedance(SI2019) # Ω
𝘩⋅𝘦⁻²α⋅2 = 376.730313667(58) [Ω] SI2019
julia> vacuumimpedance(International) # Ω
𝘤⋅Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 376.54392421928213 [Ω] International
julia> vacuumimpedance(InternationalMean) # Ω
𝘤⋅τ⋅2⁻⁶5⁻⁷/1.00049 = 376.5458060168224 [Ω] InternationalMean
julia> 120π # 3e8*μ₀ # Ω
376.99111843077515
julia> vacuumimpedance(EMU) # abΩ
𝘤⋅τ⋅2³5² = 3.767303134617706×10¹¹ [cm⋅s⁻¹] EMU
julia> vacuumimpedance(ESU) # statΩ
𝘤⁻¹τ⋅2⁻¹5⁻² = 4.1916900439033643×10⁻¹⁰ [cm⁻¹s] ESU
julia> vacuumimpedance(HLU) # hlΩ
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [cm⁻¹s] LorentzHeaviside
julia> vacuumimpedance(IPS) # in⋅lb⋅s⋅C⁻²
𝘤⋅g₀⁻¹ft⁻¹lb⁻¹τ⋅2⁻⁴3⋅5⁻⁷ = 3334.3442363371373 [lb⋅in⋅s⋅C⁻²] IPS
MeasureSystems.vacuumpermeability
— Constantvacuumpermeability(U::UnitSystem) = 𝟏/vacuumpermittivity(U)/(lightspeed(U)*lorentz(U))^2
permeability : [FT²Q⁻²R⁻¹C²], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²R⁻¹C² [μ₀] Unified
Magnetic permeability in a classical vacuum defined as μ₀
in SI units (H⋅m⁻¹, kg⋅m²⋅C⁻²).
julia> vacuumpermeability(Metric) # H⋅m⁻¹
τ⋅2⁻⁶5⁻⁷ = 1.2566370614359173×10⁻⁶ [H⋅m⁻¹] Metric
julia> vacuumpermeability(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅2 = 1.25663703976(19) × 10⁻⁶ [H⋅m⁻¹] Conventional
julia> vacuumpermeability(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅2 = 1.25663706194(35) × 10⁻⁶ [H⋅m⁻¹] CODATA
julia> vacuumpermeability(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅2 = 1.25663706212(19) × 10⁻⁶ [H⋅m⁻¹] SI2019
julia> vacuumpermeability(International) # H⋅m⁻¹
Ωᵢₜ⁻¹τ⋅2⁻⁶5⁻⁷ = 1.2560153338456637×10⁻⁶ [H⋅m⁻¹] International
julia> vacuumpermeability(EMU) # abH⋅cm⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> vacuumpermeability(ESU) # statH⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
MeasureSystems.vacuumpermittivity
— Constantvacuumpermittivity(U::UnitSystem) = 𝟏/vacuumpermeability(U)/(lightspeed(U)*lorentz(U))^2
permittivity : [F⁻¹L⁻²Q²R], [F⁻¹L⁻²Q²], [M⁻¹L⁻³T²Q²], [L⁻²T²], [𝟙]
F⁻¹L⁻²Q²R [𝘤⁻²μ₀⁻¹αL⁻²] Unified
Dielectric permittivity constant ε₀
of a classical vacuum (C²⋅N⁻¹⋅m⁻²).
julia> vacuumpermittivity(Metric) # F⋅m⁻¹
𝘤⁻²τ⁻¹2⁶5⁷ = 8.854187817620389×10⁻¹² [F⋅m⁻¹] Metric
julia> vacuumpermittivity(Conventional) # F⋅m⁻¹
𝘤⁻¹α⁻¹RK90⁻¹2⁻¹ = 8.8541879703(14) × 10⁻¹² [F⋅m⁻¹] Conventional
julia> vacuumpermittivity(CODATA) # F⋅m⁻¹
𝘤⁻¹α⁻¹RK⁻¹2⁻¹ = 8.8541878141(24) × 10⁻¹² [F⋅m⁻¹] CODATA
julia> vacuumpermittivity(SI2019) # F⋅m⁻¹
𝘩⁻¹𝘤⁻¹𝘦²α⁻¹2⁻¹ = 8.8541878128(14) × 10⁻¹² [F⋅m⁻¹] SI2019
julia> vacuumpermittivity(International) # F⋅m⁻¹
𝘤⁻²Ωᵢₜ⋅τ⁻¹2⁶5⁷ = 8.85857064059011×10⁻¹² [F⋅m⁻¹] International
julia> vacuumpermittivity(EMU) # abF⋅cm⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] EMU
julia> vacuumpermittivity(ESU) # statF⋅cm⁻¹
𝟏 = 1.0 [𝟙] ESU
julia> vacuumpermittivity(SI2019)/elementarycharge(SI2019) # 𝘦²⋅eV⁻¹⋅m⁻¹
𝘩⁻¹𝘤⁻¹𝘦⋅α⁻¹2⁻¹ = 5.52634935805(85) × 10⁷ [kg⁻¹m⁻³s²C] SI2019
MeasureSystems.electrostatic
— Constantelectrostatic(U::UnitSystem) = rationalization(U)/𝟐/τ/vacuumpermittivity(U)
nonstandard : [FL²Q⁻²], [FL²Q⁻²], [ML³T⁻²Q⁻²], [L²T⁻²], [𝟙]
FL²Q⁻²⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [𝘤²μ₀⋅λ⋅αL²] Unified
Electrostatic proportionality constant kₑ
for the Coulomb's law force (N⋅m²⋅C⁻²).
julia> electrostatic(Metric) # N⋅m²⋅C⁻²
𝘤²2⁻⁷5⁻⁷ = 8.987551787368177×10⁹ [m⋅F⁻¹] Metric
julia> electrostatic(CODATA) # N·m²⋅C⁻²
𝘤⋅α⋅RK⋅τ⁻¹ = 8.9875517909(25) × 10⁹ [m⋅F⁻¹] CODATA
julia> electrostatic(SI2019) # N·m²⋅C⁻²
𝘩⋅𝘤⋅𝘦⁻²α⋅τ⁻¹ = 8.9875517923(14) × 10⁹ [m⋅F⁻¹] SI2019
julia> electrostatic(Conventional) # N·m²⋅C⁻²
𝘤⋅α⋅RK90⋅τ⁻¹ = 8.9875516323(14) × 10⁹ [m⋅F⁻¹] Conventional
julia> electrostatic(International) # N·m²⋅C⁻²
𝘤²Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 8.98310515031877×10⁹ [m⋅F⁻¹] International
julia> electrostatic(EMU) # dyn⋅cm²⋅abC⁻²
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [erg⋅g⁻¹] EMU
julia> electrostatic(ESU) # dyn⋅cm²⋅statC⁻²
𝟏 = 1.0 [𝟙] ESU
julia> electrostatic(HLU) # dyn⋅cm²⋅hlC⁻²
τ⁻¹2⁻¹ = 0.07957747154594767 [𝟙] LorentzHeaviside
MeasureSystems.magnetostatic
— Constantmagnetostatic(U::UnitSystem) = lorentz(U)*biotsavart(U) # electrostatic(U)/lightspeed(U)^2
nonstandard : [FT²Q⁻²], [FT²Q⁻²], [MLQ⁻²], [𝟙], [L⁻²T²]
FT²Q⁻²⋅(τ⁻¹2⁻¹ = 0.07957747154594767) [μ₀⋅λ⋅αL²] Unified
Magnetic proportionality constant kₘ
for the Ampere's law force (N·s²⋅C⁻²).
julia> magnetostatic(Metric) # H⋅m⁻¹
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [H⋅m⁻¹] Metric
julia> magnetostatic(CODATA) # H⋅m⁻¹
𝘤⁻¹α⋅RK⋅τ⁻¹ = 1.00000000040(28) × 10⁻⁷ [H⋅m⁻¹] CODATA
julia> magnetostatic(SI2019) # H⋅m⁻¹
𝘩⋅𝘤⁻¹𝘦⁻²α⋅τ⁻¹ = 1.00000000055(15) × 10⁻⁷ [H⋅m⁻¹] SI2019
julia> magnetostatic(Conventional) # H⋅m⁻¹
𝘤⁻¹α⋅RK90⋅τ⁻¹ = 9.9999998275(15) × 10⁻⁸ [H⋅m⁻¹] Conventional
julia> magnetostatic(International) # H⋅m⁻¹
Ωᵢₜ⁻¹2⁻⁷5⁻⁷ = 9.995052449037727×10⁻⁸ [H⋅m⁻¹] International
julia> magnetostatic(EMU) # abH⋅m⁻¹
𝟏 = 1.0 [𝟙] EMU
julia> magnetostatic(ESU) # statH⋅m⁻¹
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻²s²] ESU
julia> magnetostatic(HLU) # hlH⋅m⁻¹
𝘤⁻²τ⁻¹2⁻⁵5⁻⁴ = 8.85418781762039×10⁻²³ [cm⁻²s²] LorentzHeaviside
MeasureSystems.elementarycharge
— Constantelementarycharge(U::UnitSystem) = √(𝟐*planck(U)*finestructure(U)/vacuumimpedance(U))
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(α¹ᐟ²τ¹ᐟ²2¹ᐟ² = 0.302822120872(23)) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Quantized elementary charge 𝘦
of a proton or electron 2/(klitzing(U)*josephson(U))
(C).
julia> elementarycharge(SI2019) # C
𝘦 = 1.602176634×10⁻¹⁹ [C] SI2019
julia> elementarycharge(Metric) # C
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.60217663444(12) × 10⁻¹⁹ [C] Metric
julia> elementarycharge(CODATA) # C
RK⁻¹KJ⁻¹2 = 1.6021766207(99) × 10⁻¹⁹ [C] CODATA
julia> elementarycharge(Conventional) # C
RK90⁻¹KJ90⁻¹2 = 1.602176491612271×10⁻¹⁹ [C] Conventional
julia> elementarycharge(International) # C
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻¹ᐟ²2⁷ᐟ²5⁷ᐟ² = 1.60244090637(12) × 10⁻¹⁹ [C] International
julia> elementarycharge(EMU) # abC
𝘩¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁵ᐟ²5⁵ᐟ² = 1.60217663444(12) × 10⁻²⁰ [g¹ᐟ²cm¹ᐟ²] EMU
julia> elementarycharge(ESU) # statC
𝘩¹ᐟ²𝘤¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁹ᐟ²5⁹ᐟ² = 4.80320471388(37) × 10⁻¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
julia> elementarycharge(Hartree) # 𝘦
𝟏 = 1.0 [𝘦] Hartree
MeasureSystems.faraday
— Constantfaraday(U::UnitSystem) = elementarycharge(U)*avogadro(U)
nonstandard : [QN⁻¹], [QN⁻¹], [QN⁻¹], [M¹ᐟ²L¹ᐟ²N⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹N⁻¹]
QN⁻¹⋅(α¹ᐟ²μₑᵤ⋅τ¹ᐟ²2¹ᐟ² = 0.000166122131531(14)) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹Mᵤ⋅ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Electric charge per mole of electrons 𝔉
based on elementary charge (C⋅mol⁻¹).
julia> faraday(SI2019) # C⋅mol⁻¹
NA⋅𝘦 = 96485.33212331001 [C⋅mol⁻¹] SI2019
julia> faraday(Metric) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ² = 96485.332183(37) [C⋅mol⁻¹] Metric
julia> faraday(CODATA) # C⋅mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅KJ⋅2⁻⁵5⁻³ = 96485.33297(60) [C⋅mol⁻¹] CODATA
julia> faraday(Conventional) # C⋅mol⁻¹
𝘤⋅R∞⁻¹α²μₑᵤ⋅KJ90⋅2⁻⁵5⁻³ = 96485.342448(30) [C⋅mol⁻¹] Conventional
julia> faraday(International) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ² = 96501.247011(37) [C⋅mol⁻¹] International
julia> faraday(InternationalMean) # C⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻¹ᐟ²5¹ᐟ²⋅1.0001499490173342 = 96499.800064(37) [C⋅mol⁻¹] InternationalMean
julia> faraday(EMU) # abC⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻³ᐟ²5⁻¹ᐟ² = 9648.5332183(37) [g¹ᐟ²cm¹ᐟ²mol⁻¹] EMU
julia> faraday(ESU) # statC⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤³ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2¹ᐟ²5³ᐟ² = 2.8925574896(11) × 10¹⁴ [g¹ᐟ²cm³ᐟ²s⁻¹mol⁻¹] ESU
julia> faraday(Metric)/kilocalorie(Metric) # kcal⋅(V-g-e)⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅Ωᵢₜ⋅Vᵢₜ⁻²τ⁻¹ᐟ²2⁻¹¹ᐟ²3⁻²5⁻⁷ᐟ²43 = 23.0454706695(89) [kg⁻¹m⁻²s²C⋅mol⁻¹] Metric
julia> faraday(Metric)/3600 # A⋅h⋅mol⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²μₑᵤ⋅τ⁻¹ᐟ²2⁻⁹ᐟ²3⁻²5⁻³ᐟ² = 26.801481162(10) [C⋅mol⁻¹] Metric
MeasureSystems.conductancequantum
— Constantconductancequantum(U::UnitSystem) = 𝟐*elementarycharge(U)^2/planck(U) # 2/klitzing(U)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(α⋅2² = 0.0291894102771(45)) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified
Conductance quantum G₀
is a quantized unit of electrical conductance (S).
julia> conductancequantum(SI2019) # S
𝘩⁻¹𝘦²2 = 7.748091729863649×10⁻⁵ [S] SI2019
julia> conductancequantum(Metric) # S
𝘤⁻¹α⋅τ⁻¹2⁸5⁷ = 7.7480917341(12) × 10⁻⁵ [S] Metric
julia> conductancequantum(Conventional) # S
RK90⁻¹2 = 7.74809186773062×10⁻⁵ [S] Conventional
julia> conductancequantum(CODATA) # S
RK⁻¹2 = 7.7480917310(18) × 10⁻⁵ [S] CODATA
julia> conductancequantum(International) # S
𝘤⁻¹α⋅Ωᵢₜ⋅τ⁻¹2⁸5⁷ = 7.7519270395(12) × 10⁻⁵ [S] International
julia> conductancequantum(InternationalMean) # S
𝘤⁻¹α⋅τ⁻¹2⁸5⁷⋅1.00049 = 7.7518882990(12) × 10⁻⁵ [S] InternationalMean
julia> conductancequantum(EMU) # abS
𝘤⁻¹α⋅τ⁻¹2⁻¹5⁻² = 7.7480917341(12) × 10⁻¹⁴ [cm⁻¹s] EMU
julia> conductancequantum(ESU) # statS
𝘤⋅α⋅τ⁻¹2³5² = 6.9636375713(11) × 10⁷ [cm⋅s⁻¹] ESU
MeasureSystems.klitzing
— Constantklitzing(U::UnitSystem) = planck(U)/elementarycharge(U)^2
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(α⁻¹2⁻¹ = 68.517999542(10)) [𝘤⋅μ₀⋅λ⋅αL²] Unified
Quantized Hall resistance RK
(Ω).
julia> klitzing(SI2019) # Ω
𝘩⋅𝘦⁻² = 25812.80745930451 [Ω] SI2019
julia> klitzing(Metric) # Ω
𝘤⋅α⁻¹τ⋅2⁻⁷5⁻⁷ = 25812.8074452(40) [Ω] Metric
julia> klitzing(Conventional) # Ω
RK90 = 25812.807 [Ω] Conventional
julia> klitzing(International) # Ω
𝘤⋅α⁻¹Ωᵢₜ⁻¹τ⋅2⁻⁷5⁻⁷ = 25800.036427200(40) [Ω] International
julia> klitzing(CODATA) # Ω
RK = 25812.8074555(59) [Ω] CODATA
julia> klitzing(EMU) # abΩ
𝘤⋅α⁻¹τ⋅2²5² = 2.58128074452(40) × 10¹³ [cm⋅s⁻¹] EMU
julia> klitzing(ESU) # statΩ
𝘤⁻¹α⁻¹τ⋅2⁻²5⁻² = 2.87206216508(44) × 10⁻⁸ [cm⁻¹s] ESU
MeasureSystems.josephson
— Constantjosephson(U::UnitSystem) = 𝟐*elementarycharge(U)*lorentz(U)/planck(U)
nonstandard : [F⁻¹L⁻¹T⁻¹QC⁻¹], [F⁻¹L⁻¹T⁻¹Q], [M⁻¹L⁻²TQ], [M⁻¹ᐟ²L⁻³ᐟ²T], [M⁻¹ᐟ²L⁻¹ᐟ²]
F⁻¹L⁻¹T⁻¹QC⁻¹⋅(α¹ᐟ²τ⁻¹ᐟ²2³ᐟ² = 0.0963912748286(74)) [ħ⁻¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ⁻¹ᐟ²λ⁻¹ᐟ²] Unified
Josephson constant KJ
relating potential difference to irradiation frequency (Hz⋅V⁻¹).
julia> josephson(SI2019) # Hz⋅V⁻¹
𝘩⁻¹𝘦⋅2 = 4.8359784841698356×10¹⁴ [Hz⋅V⁻¹] SI2019
julia> josephson(Metric) # Hz⋅V⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁹ᐟ²5⁷ᐟ² = 4.83597848549(37) × 10¹⁴ [Hz⋅V⁻¹] Metric
julia> josephson(Conventional) # Hz⋅V⁻¹
KJ90 = 4.835979×10¹⁴ [Hz⋅V⁻¹] Conventional
julia> josephson(CODATA) # Hz⋅V⁻¹
KJ = 4.835978525(30) × 10¹⁴ [Hz⋅V⁻¹] CODATA
julia> josephson(International) # Hz⋅V⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²Vᵢₜ⋅τ⁻¹ᐟ²2⁹ᐟ²5⁷ᐟ² = 4.83757435839(37) × 10¹⁴ [Hz⋅V⁻¹] International
julia> josephson(EMU) # Hz⋅abV⁻¹
𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁻⁷ᐟ²5⁻⁹ᐟ² = 4.83597848549(37) × 10⁶ [g⁻¹ᐟ²cm⁻³ᐟ²s] EMU
julia> josephson(ESU) # Hz⋅statV⁻¹
𝘩⁻¹ᐟ²𝘤¹ᐟ²α¹ᐟ²τ⁻¹ᐟ²2⁻³ᐟ²5⁻⁵ᐟ² = 1.44978987700(11) × 10¹⁷ [g⁻¹ᐟ²cm⁻¹ᐟ²] ESU
MeasureSystems.magneticfluxquantum
— Constantmagneticfluxquantum(U::UnitSystem) = planck(U)/𝟐/elementarycharge(U)/lorentz(U)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(α⁻¹ᐟ²τ¹ᐟ²2⁻³ᐟ² = 10.374382969600(79)) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified
Magnetic flux quantum Φ₀
is 𝟏/josephson(U)
(Wb).
julia> magneticfluxquantum(SI2019) # Wb
𝘩⋅𝘦⁻¹2⁻¹ = 2.0678338484619295×10⁻¹⁵ [Wb] SI2019
julia> magneticfluxquantum(Metric) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.06783384790(16) × 10⁻¹⁵ [Wb] Metric
julia> magneticfluxquantum(Conventional) # Wb
KJ90⁻¹ = 2.0678336278962334×10⁻¹⁵ [Wb] Conventional
julia> magneticfluxquantum(International) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²Vᵢₜ⁻¹τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ² = 2.06715168784(16) × 10⁻¹⁵ [Wb] International
julia> magneticfluxquantum(InternationalMean) # Wb
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁻⁹ᐟ²5⁻⁷ᐟ²/1.00034 = 2.06713102335(16) × 10⁻¹⁵ [Wb] InternationalMean
julia> magneticfluxquantum(EMU) # Mx
𝘩¹ᐟ²𝘤¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2⁷ᐟ²5⁹ᐟ² = 2.06783384790(16) × 10⁻⁷ [Mx] EMU
julia> magneticfluxquantum(ESU) # statWb
𝘩¹ᐟ²𝘤⁻¹ᐟ²α⁻¹ᐟ²τ¹ᐟ²2³ᐟ²5⁵ᐟ² = 6.89755126494(53) × 10⁻¹⁸ [g¹ᐟ²cm¹ᐟ²] ESU
MeasureSystems.magneton
— Constantmagneton(U::UnitSystem) = elementarycharge(U)*planckreduced(U)*lorentz(U)/2electronmass(U)
nonstandard : [FM⁻¹LTQA⁻¹C⁻¹], [L²T⁻¹Q], [L²T⁻¹Q], [M¹ᐟ²L⁵ᐟ²T⁻¹], [M¹ᐟ²L⁷ᐟ²T⁻²]
FM⁻¹LTQA⁻¹C⁻¹⋅(α¹ᐟ²τ¹ᐟ²2⁻¹ᐟ² = 0.151411060436(12)) [ħ³ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²] Unified
Bohr magneton μB
natural unit for expressing magnetic moment of electron (J⋅T⁻¹).
julia> magneton(SI2019) # J⋅T⁻¹
𝘤⋅𝘦⋅R∞⁻¹α²τ⁻¹2⁻² = 9.2740100783(28) × 10⁻²⁴ [J⋅T⁻¹] SI2019
julia> magneton(Metric) # J⋅T⁻¹
𝘩¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²τ⁻³ᐟ²2³ᐟ²5⁷ᐟ² = 9.2740100808(36) × 10⁻²⁴ [J⋅T⁻¹] Metric
julia> magneton(CODATA) # J⋅T⁻¹
𝘤⋅R∞⁻¹α²RK⁻¹KJ⁻¹τ⁻¹2⁻¹ = 9.274010001(58) × 10⁻²⁴ [J⋅T⁻¹] CODATA
julia> magneton(Conventional) # J⋅T⁻¹
𝘤⋅R∞⁻¹α²RK90⁻¹KJ90⁻¹τ⁻¹2⁻¹ = 9.2740092541(28) × 10⁻²⁴ [J⋅T⁻¹] Conventional
julia> magneton(International) # J⋅T⁻¹
𝘩¹ᐟ²𝘤¹ᐟ²R∞⁻¹α⁵ᐟ²Ωᵢₜ⋅Vᵢₜ⁻¹τ⁻³ᐟ²2³ᐟ²5⁷ᐟ² = 9.2755397877(36) × 10⁻²⁴ [J⋅T⁻¹] International
julia> magneton(ESU) # statA⋅cm²
𝘩¹ᐟ²𝘤³ᐟ²R∞⁻¹α⁵ᐟ²τ⁻³ᐟ²2¹³ᐟ²5¹⁷ᐟ² = 2.7802782776(11) × 10⁻¹⁰ [g¹ᐟ²cm⁷ᐟ²s⁻²] ESU
julia> magneton(SI2019)/elementarycharge(SI2019) # eV⋅T⁻¹
𝘤⋅R∞⁻¹α²τ⁻¹2⁻² = 5.7883818060(18) × 10⁻⁵ [m²s⁻¹] SI2019
julia> magneton(Hartree) # 𝘤⋅ħ⋅mₑ⁻¹
2⁻¹ = 0.5 [𝘦] Hartree
Astronomical Constants
MeasureSystems.eddington
— Constanteddington(U::UnitSystem) = mass(𝟏,U,Cosmological)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²𝘤³R∞⁻¹α²ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁸3⁷ᐟ²5⁶ = 2.804(21) × 10⁸²) [mₑ] Unified
Approximate number of protons in the Universe
as estimated by Eddington (kg or lb).
julia> 𝟐^2^2^3/α # mₚ
α⁻¹2²⁵⁶ = 1.58676846347(24) × 10⁷⁹
julia> eddington(QCD) # mₚ
𝘩⁻²𝘤³R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁸3⁷ᐟ²5⁶ = 1.527(11) × 10⁷⁹ [mₚ] QCD
julia> eddington(Metric) # kg
𝘩⁻¹𝘤²ΩΛ⁻¹ᐟ²H0⁻¹au⋅mP²τ⁻¹ᐟ²2⁹3⁷ᐟ²5⁶ = 2.555(19) × 10⁵² [kg] Metric
julia> eddington(IAU) # M☉
𝘤³ΩΛ⁻¹ᐟ²H0⁻¹au⁻²kG⁻²τ⁻⁷ᐟ²2³⁷3³⁵ᐟ²5¹⁶ = 1.2847(95) × 10²² [M☉] IAU☉
julia> eddington(Cosmological)
𝟏 = 1.0 [M] Cosmological
MeasureSystems.solarmass
— Constantsolarmass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 2.182814(48) × 10⁶⁰) [mₑ] Unified
Solar mass
estimated from gravitational constant estimates (kg or slug).
julia> solarmass(Metric) # kg
𝘩⁻¹𝘤⁻¹au³kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.988409(44) × 10³⁰ [kg] Metric
julia> solarmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹au³ft⋅lb⁻¹kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1.362493(30) × 10²⁹ [slug] British
julia> solarmass(English) # lb
𝘩⁻¹𝘤⁻¹au³lb⁻¹kG²mP²τ³2⁻²⁸3⁻¹⁴5⁻¹⁰ = 4.383692(97) × 10³⁰ [lbm] English
julia> solarmass(IAUE) # ME
au³kG²GME⁻¹τ²2⁻²⁸3⁻¹⁴5⁻¹⁰ = 332946.04409(67) [ME] IAUE
julia> solarmass(IAUJ) # MJ
au³kG²GMJ⁻¹τ²2⁻²⁸3⁻¹⁴5⁻¹⁰ = 1047.565484(74) [MJ] IAUJ
julia> solarmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 1.188798(26) × 10⁵⁷ [mₚ] QCD
julia> solarmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅au³kG²mP²τ³2⁻²⁹3⁻¹⁴5⁻¹⁰ = 1.197448(26) × 10⁵⁷ [𝟙] Metric
MeasureSystems.jupitermass
— Constantjupitermass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹mP²GMJ⋅τ = 1.898124(42) × 10²⁷,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GMJ⋅τ⋅2⁻¹ = 2.083702(46) × 10⁵⁷) [mₑ] Unified
Jupiter mass
estimated from gravitational constant estimates (kg or slug).
julia> jupitermass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GMJ⋅τ = 1.898124(42) × 10²⁷ [kg] Metric
julia> jupitermass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GMJ⋅τ = 1.300628(29) × 10²⁶ [slug] British
julia> jupitermass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GMJ⋅τ = 4.184647(92) × 10²⁷ [lbm] English
julia> jupitermass(IAU) # M☉
au⁻³kG⁻²GMJ⋅τ⁻²2²⁸3¹⁴5¹⁰ = 0.000954594262(68) [M☉] IAU☉
julia> jupitermass(IAUE) # ME
GME⁻¹GMJ = 317.828383(23) [ME] IAUE
julia> jupitermass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GMJ⋅τ⋅2⁻¹ = 1.134820(25) × 10⁵⁴ [mₚ] QCD
julia> jupitermass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GMJ⋅τ⋅2⁻¹ = 1.143077(25) × 10⁵⁴ [𝟙] Metric
MeasureSystems.earthmass
— Constantearthmass(U::UnitSystem) = mass(𝘩⁻¹𝘤⁻¹mP²GME⋅τ = 5.97217(13) × 10²⁴,U)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GME⋅τ⋅2⁻¹ = 6.55606(14) × 10⁵⁴) [mₑ] Unified
Earth mass
estimated from gravitational constant estimates (kg or slug).
julia> earthmass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GME⋅τ = 5.97217(13) × 10²⁴ [kg] Metric
julia> earthmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GME⋅τ = 4.092234(90) × 10²³ [slug] British
julia> earthmass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GME⋅τ = 1.316637(29) × 10²⁵ [lbm] English
julia> earthmass(IAU) # M☉
au⁻³kG⁻²GME⋅τ⁻²2²⁸3¹⁴5¹⁰ = 3.0034896577(60) × 10⁻⁶ [M☉] IAU☉
julia> earthmass(IAUJ) # MJ
GME⋅GMJ⁻¹ = 0.00314635210(22) [MJ] IAUJ
julia> earthmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GME⋅τ⋅2⁻¹ = 3.570542(79) × 10⁵¹ [mₚ] QCD
julia> earthmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GME⋅τ⋅2⁻¹ = 3.596523(79) × 10⁵¹ [𝟙] Metric
MeasureSystems.lunarmass
— Constantlunarmass(U::UnitSystem) = earthmass(U)/μE☾
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻²R∞⁻¹α²mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 8.06398(18) × 10⁵²) [mₑ] Unified
Lunar mass
estimated from μE☾
Earth-Moon mass ratio (kg or slug).
julia> lunarmass(Metric) # kg
𝘩⁻¹𝘤⁻¹mP²GME⋅τ/81.3005680(30) = 7.34579(16) × 10²² [kg] Metric
julia> lunarmass(British) # slug
𝘩⁻¹𝘤⁻¹g₀⁻¹ft⋅lb⁻¹mP²GME⋅τ/81.3005680(30) = 5.03346(11) × 10²¹ [slug] British
julia> lunarmass(English) # lb
𝘩⁻¹𝘤⁻¹lb⁻¹mP²GME⋅τ/81.3005680(30) = 1.619469(36) × 10²³ [lbm] English
julia> lunarmass(IAU) # M☉
au⁻³kG⁻²GME⋅τ⁻²2²⁸3¹⁴5¹⁰/81.3005680(30) = 3.69430341(14) × 10⁻⁸ [M☉] IAU☉
julia> lunarmass(IAUE) # ME
𝟏/81.3005680(30) = 0.01230003707(45) [ME] IAUE
julia> lunarmass(IAUJ) # MJ
GME⋅GMJ⁻¹/81.3005680(30) = 3.87002474(31) × 10⁻⁵ [MJ] IAUJ
julia> lunarmass(QCD) # mₚ
𝘩⁻²R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 4.391780(97) × 10⁴⁹ [mₚ] QCD
julia> lunarmass(Metric)/dalton(Metric) # Da
𝘩⁻²R∞⁻¹α²μₑᵤ⋅mP²GME⋅τ⋅2⁻¹/81.3005680(30) = 4.423736(98) × 10⁴⁹ [𝟙] Metric
MeasureSystems.gravity
— Constantgravity(U::UnitSystem) = # mass*acceleration/force
gravityforce : [F⁻¹MLT⁻²], [𝟙], [𝟙], [𝟙], [𝟙]
F⁻¹MLT⁻² [g₀] Unified
Gravitational force reference used in technical engineering units (kg⋅m⋅N⁻¹⋅s⁻²).
julia> gravity(Metric)
𝟏 = 1.0 [𝟙] Metric
julia> gravity(Engineering) # m⋅kg⋅N⁻¹⋅s⁻²
g₀ = 9.80665 [kgf⁻¹kg⋅m⋅s⁻²] Engineering
julia> gravity(English) # ft⋅lbm⋅lbf⁻¹⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [lbf⁻¹lbm⋅ft⋅s⁻²] English
MeasureSystems.earthradius
— Constantearthradius(U::UnitSystem) = sqrt(earthmass(U)*gravitation(U)/gforce(U))
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2 = 1.6509810466(17) × 10¹⁹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Approximate length
of standard Earth two-body radius consistent with units (m or ft).
julia> earthradius(KKH) # km
g₀⁻¹ᐟ²GME¹ᐟ²2⁻³5⁻³ = 6375.4163237(64) [km] KKH
julia> earthradius(Nautical) # nm
τ⁻¹2⁵3³5² = 3437.7467707849396 [nm] Nautical
julia> earthradius(IAU) # au
g₀⁻¹ᐟ²au⁻¹GME¹ᐟ² = 4.2617025856(43) × 10⁻⁵ [au] IAU☉
MeasureSystems.greatcircle
— Constantgreatcircle(U::UnitSystem) = τ*earthradius(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2 = 1.0373419854(11) × 10²⁰) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Approximate length
of standard Earth two-body circle consistent with units (m or ft).
julia> greatcircle(KKH) # km
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻³5⁻³ = 40057.922172(40) [km] KKH
julia> greatcircle(Nautical) # nm
2⁵3³5² = 21600.0 [nm] Nautical
julia> greatcircle(IAU) # au
g₀⁻¹ᐟ²au⁻¹GME¹ᐟ²τ = 0.00026777067070(27) [au] IAU☉
MeasureSystems.gaussianmonth
— Constantgaussianmonth(U::UnitSystem) = τ*sqrt(lunardistance(U)^3/earthmass(U)/gravitation(U))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²GME⁻¹ᐟ²τ²2¹¹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.6987431854323947×10⁶ = 1.8413595336(19) × 10²⁷) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Orbit time
defined by lunardistance
and earthmass
for neglible mass
satellite (s).
julia> gaussianmonth(Metric) # s
GME⁻¹ᐟ²τ⋅2⁹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.6987431854323947×10⁶ = 2.3718343493(24) × 10⁶ [s] Metric
julia> gaussianmonth(MPH) # h
GME⁻¹ᐟ²τ⋅2¹ᐟ²3⁵ᐟ²5⁵ᐟ²⋅1.6987431854323947×10⁶ = 658.84287479(66) [h] MPH
julia> gaussianmonth(IAU) # D
GME⁻¹ᐟ²τ⋅2⁻⁵ᐟ²3³ᐟ²5⁵ᐟ²⋅1.6987431854323947×10⁶ = 27.451786450(28) [D] IAU☉
MeasureSystems.siderealmonth
— Constantsiderealmonth(U::UnitSystem) = gaussianmonth(U)/√(𝟏+lunarmass(IAU))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²GME⁻¹ᐟ²τ²2¹¹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.71963778958(77) × 10⁶ = 1.8640083241(21) × 10²⁷) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Orbit time
defined by standard lunardistance
and the Earth-Moon system mass
(s).
julia> siderealmonth(Metric) # s
GME⁻¹ᐟ²τ⋅2⁹ᐟ²3⁹ᐟ²5⁹ᐟ²⋅1.71963778958(77) × 10⁶ = 2.4010079997(26) × 10⁶ [s] Metric
julia> siderealmonth(MPH) # h
GME⁻¹ᐟ²τ⋅2¹ᐟ²3⁵ᐟ²5⁵ᐟ²⋅1.71963778958(77) × 10⁶ = 666.94666658(73) [h] MPH
julia> siderealmonth(IAU) # D
GME⁻¹ᐟ²τ⋅2⁻⁵ᐟ²3³ᐟ²5⁵ᐟ²⋅1.71963778958(77) × 10⁶ = 27.789444441(31) [D] IAU☉
MeasureSystems.synodicmonth
— Constantsynodicmonth(U::UnitSystem) = 𝟏/(𝟏/siderealmonth(U)-𝟏/siderealyear(U))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁸3³5²⋅30.07781546600(36) = 2.0175033912(25) × 10²⁷) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Orbit time
defined by siderealmonth
and siderealyear
of Sun-Earth-Moon system (s).
julia> synodicmonth(Metric) # s
2⁷3³5²⋅30.07781546600(36) = 2.5987232563(31) × 10⁶ [s] Metric
julia> synodicmonth(MPH) # h
2³3⋅30.07781546600(36) = 721.86757118(86) [h] MPH
julia> synodicmonth(IAU) # D
30.07781546600(36) = 30.07781546600(36) [D] IAU☉
MeasureSystems.gaussianyear
— Constantgaussianyear(U::UnitSystem) = turn(U)/gaussgravitation(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²kG⁻¹τ⋅2¹⁵3⁷5⁵ = 2.45000183355(75) × 10²⁸) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Orbit time
defined by gaussgravitation
constant kG
for neglible mass
satellite (s).
julia> gaussianyear(Metric) # s
kG⁻¹2¹⁴3⁷5⁵ = 3.155819598840209×10⁷ [s] Metric
julia> gaussianyear(MPH) # h
kG⁻¹2¹⁰3⁵5³ = 8766.165552333914 [h] MPH
julia> gaussianyear(IAU) # D
kG⁻¹2⁷3⁴5³ = 365.2568980139131 [D] IAU☉
MeasureSystems.siderealyear
— Constantsiderealyear(U::UnitSystem) = gaussianyear(U)/√(𝟏+earthmass(IAU)+lunarmass(IAU))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²kG⁻¹τ⋅2¹⁵3⁷5⁵⋅1.0000029665466235(62) = 2.45000910160(75) × 10²⁸) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Orbit time
defined by gaussgravitation
constant kG
and Earth-Moon system mass
(s).
julia> siderealyear(Metric) # s
kG⁻¹2¹⁴3⁷5⁵⋅1.0000029665466235(62) = 3.155828960726184(20) × 10⁷ [s] Metric
julia> siderealyear(MPH) # h
kG⁻¹2¹⁰3⁵5³⋅1.0000029665466235(62) = 8766.191557572734(54) [h] MPH
julia> siderealyear(IAU) # D
kG⁻¹2⁷3⁴5³⋅1.0000029665466235(62) = 365.2579815655306(23) [D] IAU☉
MeasureSystems.jovianyear
— Constantjovianyear(U::UnitSystem) = τ*day(U)*√(jupiterdistance(U)^3/solarmass(U)/gravitation(U))/√(𝟏+jupitermass(IAU))
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²au⁻³ᐟ²kG⁻¹τ⋅2²⁴3¹⁷ᐟ²5¹⁴⋅1.323131008954(9) × 10⁸ = 2.91113952707(92) × 10²⁹) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Orbit time
defined by jupiterdistance
and the Sun-Jupiter system mass
(s).
julia> jovianyear(Metric) # s
au⁻³ᐟ²kG⁻¹2²³3¹⁷ᐟ²5¹⁴⋅1.323131008954(9) × 10⁸ = 3.74980583633(28) × 10⁸ [s] Metric
julia> jovianyear(MPH) # h
au⁻³ᐟ²kG⁻¹2¹⁹3¹³ᐟ²5¹²⋅1.323131008954(9) × 10⁸ = 104161.2732315(77) [h] MPH
julia> jovianyear(IAU) # D
au⁻³ᐟ²kG⁻¹2¹⁶3¹¹ᐟ²5¹²⋅1.323131008954(9) × 10⁸ = 4340.0530513100(32) [D] IAU☉
MeasureSystems.radarmile
— Constantradarmile(U::UnitSystem) = 𝟐*nauticalmile(U)/lightspeed(U)
time : [T], [T], [T], [T], [T]
T⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻³3⁻³5⁻² = 9.605018384(10) × 10¹⁵) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Unit of time
delay from a two-way nauticalmile
radar return (s).
julia> radarmile(Metric)
𝘤⁻¹g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁴3⁻³5⁻² = 1.2372115338(12) × 10⁻⁵ [s] Metric
MeasureSystems.hubble
— Constanthubble(U::UnitSystem) = time(U,Hubble)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²H0⋅au⁻¹2⁻¹¹3⁻⁴5⁻⁶ = 2.824(18) × 10⁻³⁹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Hubble universe expansion frequency parameter.
julia> hubble(Metric)
H0⋅au⁻¹τ⋅2⁻¹⁰3⁻⁴5⁻⁶ = 2.193(14) × 10⁻¹⁸ [Hz] Metric
julia> hubble(Hubble)
𝟏 = 1.0 [T⁻¹] Hubble
julia> hubble(Cosmological)
ΩΛ⁻¹ᐟ²τ¹ᐟ²2⋅3⁻¹ᐟ² = 3.487(14) [T⁻¹] Cosmological
julia> 𝟏/hubble(Metric)/year(Metric)
H0⁻¹aⱼ⁻¹au⋅τ⁻¹2³3⋅5⁴ = 1.4452(90) × 10¹⁰ [𝟙] Metric
MeasureSystems.cosmological
— Constantcosmological(U::UnitSystem) = 𝟑*darkenergydensity(U)*(hubble(U)/lightspeed(U))^2
fuelefficiency : [L⁻²], [L⁻²], [L⁻²], [L⁻²], [L⁻²]
L⁻²⋅(𝘤⁻²R∞⁻²α⁴ΩΛ⋅H0²au⁻²2⁻²²3⁻⁷5⁻¹² = 1.649(24) × 10⁻⁷⁷) [ħ⁻²𝘤²mₑ²ϕ⁻²g₀⁻²] Unified
Cosmological constant from Einstein's controversial theory expanded on by Hubble.
julia> cosmological(Metric)
𝘤⁻²ΩΛ⋅H0²au⁻²τ²2⁻²⁰3⁻⁷5⁻¹² = 1.106(16) × 10⁻⁵² [m⁻²] Metric
julia> cosmological(Hubble)
ΩΛ⋅3 = 2.067(17) [T⁻²] Hubble
julia> cosmological(Cosmological)
τ⋅2² = 25.132741228718345 [T⁻²] Cosmological
Constants Index
MeasureSystems.Universe
MeasureSystems.avogadro
MeasureSystems.biotsavart
MeasureSystems.bohr
MeasureSystems.boltzmann
MeasureSystems.conductancequantum
MeasureSystems.cosmological
MeasureSystems.dalton
MeasureSystems.earthmass
MeasureSystems.earthradius
MeasureSystems.eddington
MeasureSystems.einstein
MeasureSystems.electronmass
MeasureSystems.electronradius
MeasureSystems.electrostatic
MeasureSystems.elementarycharge
MeasureSystems.faraday
MeasureSystems.gaussgravitation
MeasureSystems.gaussianmonth
MeasureSystems.gaussianyear
MeasureSystems.gravitation
MeasureSystems.gravity
MeasureSystems.greatcircle
MeasureSystems.hartree
MeasureSystems.hubble
MeasureSystems.hyperfine
MeasureSystems.josephson
MeasureSystems.jovianyear
MeasureSystems.jupitermass
MeasureSystems.klitzing
MeasureSystems.lightspeed
MeasureSystems.lorentz
MeasureSystems.loschmidt
MeasureSystems.luminousefficacy
MeasureSystems.lunarmass
MeasureSystems.magneticfluxquantum
MeasureSystems.magneton
MeasureSystems.magnetostatic
MeasureSystems.molargas
MeasureSystems.molarmass
MeasureSystems.planck
MeasureSystems.planckmass
MeasureSystems.planckreduced
MeasureSystems.protonmass
MeasureSystems.radarmile
MeasureSystems.radiationdensity
MeasureSystems.rationalization
MeasureSystems.rydberg
MeasureSystems.siderealmonth
MeasureSystems.siderealyear
MeasureSystems.solarmass
MeasureSystems.stefan
MeasureSystems.synodicmonth
MeasureSystems.vacuumimpedance
MeasureSystems.vacuumpermeability
MeasureSystems.vacuumpermittivity
MeasureSystems.wienfrequency
MeasureSystems.wienwavelength
MeasureSystems.mechanicalheat
MeasureSystems.sackurtetrode
MeasureSystems.British
MeasureSystems.CODATA
MeasureSystems.Conventional
MeasureSystems.Cosmological
MeasureSystems.CosmologicalQuantum
MeasureSystems.EMU
MeasureSystems.ESU
MeasureSystems.Electronic
MeasureSystems.Engineering
MeasureSystems.English
MeasureSystems.FFF
MeasureSystems.FPS
MeasureSystems.Gauss
MeasureSystems.Gravitational
MeasureSystems.Hartree
MeasureSystems.Hubble
MeasureSystems.IAU
MeasureSystems.IAUE
MeasureSystems.IAUJ
MeasureSystems.IPS
MeasureSystems.International
MeasureSystems.InternationalMean
MeasureSystems.KKH
MeasureSystems.LorentzHeaviside
MeasureSystems.MPH
MeasureSystems.MTS
MeasureSystems.Meridian
MeasureSystems.Metric
MeasureSystems.Natural
MeasureSystems.NaturalGauss
MeasureSystems.Nautical
MeasureSystems.Planck
MeasureSystems.PlanckGauss
MeasureSystems.QCD
MeasureSystems.QCDGauss
MeasureSystems.QCDoriginal
MeasureSystems.Rydberg
MeasureSystems.SI1976
MeasureSystems.SI2019
MeasureSystems.Schrodinger
MeasureSystems.Stoney
MeasureSystems.Survey