Standard Units
- Standard Units
- Prefix Units
- Mechanics Units
- Angle Units
- Solid Angle Units
- Time Units
- Length Units
- Speed Units
- Area Units
- Volume Units
- Mass Units
- Force Units
- Pressure Units
- Energy Units
- Power Units
- Electromagnetic Units
- Charge Units
- Current Units
- Electromotive Units
- Inductance Units
- Resistance Units
- Conductance Units
- Capacitance Units
- Magnetic Flux Units
- Magnetic Flux Density Units
- Magnetic Specialized Units
- Thermodynamic Units
- Photometric Units
- Specialized Units
- Units Index
Similar to how SI defines standardized units of kilogram
, meter
, second
, kelvin
, coulomb
, candela
, and mole
; the following is a comprehensive selection of generated standardized physics units defined by UnitSystem
defaults useful for scientists and engineers.
Prefix Units
MeasureSystems.centi
— Constantjulia> deci # 𝟏𝟎^-1
2⁻¹5⁻¹ = 0.1
julia> centi # 𝟏𝟎^-2
2⁻²5⁻² = 0.010000000000000002
julia> milli # 𝟏𝟎^-3
2⁻³5⁻³ = 0.001
julia> micro # 𝟏𝟎^-6
2⁻⁶5⁻⁶ = 1.0×10⁻⁶
julia> nano # 𝟏𝟎^-9
2⁻⁹5⁻⁹ = 1.0×10⁻⁹
julia> pico # 𝟏𝟎^-12
2⁻¹²5⁻¹² = 1.0000000000000002×10⁻¹²
julia> femto # 𝟏𝟎^-15
2⁻¹⁵5⁻¹⁵ = 1.0×10⁻¹⁵
julia> atto # 𝟏𝟎^-18
2⁻¹⁸5⁻¹⁸ = 9.999999999999999×10⁻¹⁹
julia> zepto # 𝟏𝟎^-21
2⁻²¹5⁻²¹ = 1.0000000000000001×10⁻²¹
julia> yocto # 𝟏𝟎^-24
2⁻²⁴5⁻²⁴ = 1.0×10⁻²⁴
MeasureSystems.kilo
— Constantjulia> deka # 𝟏𝟎
2⋅5 = 10.0
julia> hecto # 𝟏𝟎^2
2²5² = 100.0
julia> kilo # 𝟏𝟎^3
2³5³ = 1000.0
julia> mega # 𝟏𝟎^6
2⁶5⁶ = 1.0×10⁶
julia> giga # 𝟏𝟎^9
2⁹5⁹ = 1.0×10⁹
julia> tera # 𝟏𝟎^12
2¹²5¹² = 1.0×10¹²
julia> peta # 𝟏𝟎^15
2¹⁵5¹⁵ = 1.0×10¹⁵
julia> exa # 𝟏𝟎^18
2¹⁸5¹⁸ = 1.0×10¹⁸
julia> zetta # 𝟏𝟎^21
2²¹5²¹ = 1.0×10²¹
julia> yotta # 𝟏𝟎^24
2²⁴5²⁴ = 1.0×10²⁴
MeasureSystems.byte
— Constantjulia> byte # 𝟐^3
2³ = 8.0
julia> kibi # 𝟐^10
2¹⁰ = 1024.0
julia> mebi # 𝟐^20
2²⁰ = 1.048576×10⁶
julia> gibi # 𝟐^30
2³⁰ = 1.073741824×10⁹
julia> tebi # 𝟐^40
2⁴⁰ = 1.099511627776×10¹²
julia> pebi # 𝟐^50
2⁵⁰ = 1.125899906842624×10¹⁵
julia> exbi # 𝟐^60
2⁶⁰ = 1.152921504606847×10¹⁸
julia> zebi # 𝟐^70
2⁷⁰ = 1.1805916207174113×10²¹
julia> yobi # 𝟐^80
2⁸⁰ = 1.2089258196146292×10²⁴
Mechanics Units
Angle Units
MeasureSystems.turn
— Constantturn(U::UnitSystem) = 2π/angle(U)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ = 6.283185307179586) [ϕ] Unified
Complete rotation angle
of revolution from a full circle.
julia> turn(Engineering) # rad
τ = 6.283185307179586 [rad] Engineering
julia> turn(MetricDegree) # deg
2³3²5 = 360.0 [deg] MetricDegree
julia> turn(MetricArcminute) # amin
2⁵3³5² = 21600.0 [amin] MetricArcminute
julia> turn(MetricArcsecond) # asec
2⁷3⁴5³ = 1.296×10⁶ [asec] MetricArcsecond
julia> turn(MetricGradian) # gon
2⁴5² = 400.0 [gon] MetricGradian
MeasureSystems.radian
— Constantradian(U::UnitSystem) = angle(𝟏,U,Metric)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A [ϕ] Unified
Unit of angle
which is dimensionless (rad).
julia> radian(Engineering) # rad
𝟏 = 1.0 [rad] Engineering
julia> radian(MetricDegree) # deg
τ⁻¹2³3²5 = 57.29577951308232 [deg] MetricDegree
julia> radian(MetricArcminute) # amin
τ⁻¹2⁵3³5² = 3437.7467707849396 [amin] MetricArcminute
julia> radian(MetricArcsecond) # asec
τ⁻¹2⁷3⁴5³ = 206264.80624709636 [asec] MetricArcsecond
julia> radian(MetricGradian) # gon
τ⁻¹2⁴5² = 63.66197723675814 [gon] MetricGradian
MeasureSystems.spatian
— Constantspatian(U::UnitSystem) = angle(𝟏,U,MetricSpatian)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ¹ᐟ²2¹ᐟ² = 3.5449077018110318) [ϕ] Unified
Unit of angle
which is dimensionless (rad).
julia> spatian(Engineering) # rad
τ¹ᐟ²2¹ᐟ² = 3.5449077018110318 [rad] Engineering
julia> spatian(MetricDegree) # deg
τ⁻¹ᐟ²2⁷ᐟ²3²5 = 203.1082500771923 [deg] MetricDegree
julia> spatian(MetricArcminute) # amin
τ⁻¹ᐟ²2¹¹ᐟ²3³5² = 12186.495004631537 [amin] MetricArcminute
julia> spatian(MetricArcsecond) # asec
τ⁻¹ᐟ²2¹⁵ᐟ²3⁴5³ = 731189.7002778922 [asec] MetricArcsecond
julia> spatian(MetricGradian) # gon
τ⁻¹ᐟ²2⁹ᐟ²5² = 225.67583341910253 [gon] MetricGradian
MeasureSystems.gradian
— Constantgradian(U::UnitSystem) = angle(𝟏,U,MetricGradian)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁴5⁻² = 0.015707963267948967) [ϕ] Unified
Unit of angle
which divides a turn
into 400
parts (rad).
julia> gradian(Engineering) # rad
τ⋅2⁻⁴5⁻² = 0.015707963267948967 [rad] Engineering
julia> gradian(MetricDegree) # deg
2⁻¹3²5⁻¹ = 0.9 [deg] MetricDegree
julia> gradian(MetricArcminute) # amin
2⋅3³ = 54.0 [amin] MetricArcminute
julia> gradian(MetricArcsecond) # asec
2³3⁴5 = 3240.0 [asec] MetricArcsecond
julia> gradian(MetricGradian) # gon
𝟏 = 1.0 [gon] MetricGradian
MeasureSystems.bradian
— Constantbradian(U::UnitSystem) = angle(τ/𝟐^8,U,Metric)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁸ = 0.02454369260617026) [ϕ] Unified
Unit of angle
which divides a turn
into 𝟐^8
or 256
parts (rad).
julia> bradian(Engineering) # rad
τ⋅2⁻⁸ = 0.02454369260617026 [rad] Engineering
julia> bradian(MetricDegree) # deg
2⁻⁵3²5 = 1.40625 [deg] MetricDegree
julia> bradian(MetricArcminute) # amin
2⁻³3³5² = 84.375 [amin] MetricArcminute
julia> bradian(MetricArcsecond) # asec
2⁻¹3⁴5³ = 5062.5 [asec] MetricArcsecond
julia> bradian(MetricGradian) # gon
2⁻⁴5² = 1.5625 [gon] MetricGradian
MeasureSystems.degree
— Constantdegree(U::UnitSystem) = angle(𝟏,U,MetricDegree)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻³3⁻²5⁻¹ = 0.017453292519943295) [ϕ] Unified
Unit of angle
which divides a turn
into 360
parts (rad).
julia> degree(Engineering) # rad
τ⋅2⁻³3⁻²5⁻¹ = 0.017453292519943295 [rad] Engineering
julia> degree(MetricDegree) # deg
𝟏 = 1.0 [deg] MetricDegree
julia> degree(MetricArcminute) # amin
2²3⋅5 = 60.0 [amin] MetricArcminute
julia> degree(MetricArcsecond) # asec
2⁴3²5² = 3600.0 [asec] MetricArcsecond
julia> degree(MetricGradian) # gon
2⋅3⁻²5 = 1.1111111111111112 [gon] MetricGradian
MeasureSystems.arcminute
— Constantarcminute(U::UnitSystem) = angle(𝟏,U,MetricArcminute)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁵3⁻³5⁻² = 0.0002908882086657217) [ϕ] Unified
Unit of angle
which divides a degree
into 60
parts (rad).
julia> arcminute(Engineering) # rad
τ⋅2⁻⁵3⁻³5⁻² = 0.0002908882086657217 [rad] Engineering
julia> arcminute(MetricDegree) # deg
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [deg] MetricDegree
julia> arcminute(MetricArcminute) # amin
𝟏 = 1.0 [amin] MetricArcminute
julia> arcminute(MetricArcsecond) # asec
2²3⋅5 = 60.0 [asec] MetricArcsecond
julia> arcminute(MetricGradian) # gon
2⁻¹3⁻³ = 0.01851851851851852 [gon] MetricGradian
MeasureSystems.arcsecond
— Constantarcsecond(U::UnitSystem) = angle(𝟏,U,MetricArcsecond)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁷3⁻⁴5⁻³ = 4.84813681109536×10⁻⁶) [ϕ] Unified
Unit of angle
which divides a arcminute
into 60
parts (rad).
julia> arcsecond(Engineering) # rad
τ⋅2⁻⁷3⁻⁴5⁻³ = 4.84813681109536×10⁻⁶ [rad] Engineering
julia> arcsecond(MetricDegree) # deg
2⁻⁴3⁻²5⁻² = 0.00027777777777777783 [deg] MetricDegree
julia> arcsecond(MetricArcminute) # amin
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [amin] MetricArcminute
julia> arcsecond(MetricArcsecond) # asec
𝟏 = 1.0 [asec] MetricArcsecond
julia> arcsecond(MetricGradian) # gon
2⁻³3⁻⁴5⁻¹ = 0.00030864197530864197 [gon] MetricGradian
Solid Angle Units
MeasureSystems.spat
— Constantspat(U::UnitSystem) = 4π/solidangle(U)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A²⋅(τ⋅2 = 12.566370614359172) [ϕ²] Unified
Complete spherical solidangle
around point from a full sphere.
julia> spat(Engineering) # rad²
τ⋅2 = 12.566370614359172 [rad²] Engineering
julia> spat(MetricDegree) # deg²
τ⁻¹2⁷3⁴5² = 41252.96124941928 [deg²] MetricDegree
julia> spat(MetricArcminute) # amin²
τ⁻¹2¹¹3⁶5⁴ = 1.485106604979094×10⁸ [amin²] MetricArcminute
julia> spat(MetricArcsecond) # asec²
τ⁻¹2¹⁵3⁸5⁶ = 5.346383777924738×10¹¹ [asec²] MetricArcsecond
julia> spat(MetricGradian) # gon²
τ⁻¹2⁹5⁴ = 50929.58178940651 [gon²] MetricGradian
MeasureSystems.steradian
— Constantsteradian(U::UnitSystem) = solidangle(𝟏,U,Metric)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A² [ϕ²] Unified
Unit of solidangle
which is dimensionless (rad²).
julia> steradian(Engineering) # rad²
𝟏 = 1.0 [rad²] Engineering
julia> steradian(MetricDegree) # deg²
τ⁻²2⁶3⁴5² = 3282.8063500117446 [deg²] MetricDegree
julia> steradian(MetricArcminute) # amin²
τ⁻²2¹⁰3⁶5⁴ = 1.181810286004228×10⁷ [amin²] MetricArcminute
julia> steradian(MetricArcsecond) # asec²
τ⁻²2¹⁴3⁸5⁶ = 4.254517029615221×10¹⁰ [asec²] MetricArcsecond
julia> steradian(MetricGradian) # gon²
τ⁻²2⁸5⁴ = 4052.8473456935117 [gon²] MetricGradian
MeasureSystems.squaredegree
— Constantsquaredegree(U::UnitSystem) = solidangle(𝟏,U,MetricDegree)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A²⋅(τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087) [ϕ²] Unified
Unit of solidangle
which is a degree
squared (rad²).
julia> squaredegree(Engineering) # rad²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [rad²] Engineering
julia> squaredegree(MetricDegree) # deg²
𝟏 = 1.0 [deg²] MetricDegree
julia> squaredegree(MetricArcminute) # amin²
2⁴3²5² = 3600.0 [amin²] MetricArcminute
julia> squaredegree(MetricArcsecond) # asec²
2⁸3⁴5⁴ = 1.296×10⁷ [asec²] MetricArcsecond
julia> squaredegree(MetricGradian) # gon²
2²3⁻⁴5² = 1.2345679012345678 [gon²] MetricGradian
Time Units
MeasureSystems.second
— Constantsecond(U::UnitSystem) = time(𝟏,U,Metric)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2 = 7.7634407063(24) × 10²⁰) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Unit of time
defined by hyperfine
transition frequency of Cs-133 atom (s).
julia> second(Metric) # s
𝟏 = 1.0 [s] Metric
julia> second(MPH) # h
2⁻⁴3⁻²5⁻² = 0.00027777777777777783 [h] MPH
julia> second(IAU) # D
2⁻⁷3⁻³5⁻² = 1.1574074074074079×10⁻⁵ [D] IAU☉
MeasureSystems.minute
— Constantminute(U::UnitSystem) = 𝟐^2*𝟑*𝟓*second(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2³3⋅5 = 4.6580644238(14) × 10²²) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Unit of time
defined by 60 second
intervals (s).
julia> minute(Metric) # s
2²3⋅5 = 60.0 [s] Metric
julia> minute(MPH) # h
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [h] MPH
julia> minute(IAU) # D
2⁻⁵3⁻²5⁻¹ = 0.0006944444444444445 [D] IAU☉
MeasureSystems.hour
— Constanthour(U::UnitSystem) = 𝟐^2*𝟑*𝟓*minute(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁵3²5² = 2.79483865428(86) × 10²⁴) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Unit of time
defined by 60 minute
intervals (s).
julia> hour(Metric) # s
2⁴3²5² = 3600.0 [s] Metric
julia> hour(MPH) # h
𝟏 = 1.0 [h] MPH
julia> hour(IAU) # D
2⁻³3⁻¹ = 0.041666666666666664 [D] IAU☉
MeasureSystems.day
— Constantday(U::UnitSystem) = 𝟐^3*𝟑*hour(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁸3³5² = 6.7076127703(21) × 10²⁵) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Unit of time
defined by 24 hour
intervals (s).
julia> day(Metric) # s
2⁷3³5² = 86400.0 [s] Metric
julia> day(MPH) # h
2³3 = 24.0 [h] MPH
julia> day(IAU) # D
𝟏 = 1.0 [D] IAU☉
MeasureSystems.year
— Constantyear(U::UnitSystem) = aⱼ*day(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²aⱼ⋅τ⋅2⁸3³5² = 2.44995556434(75) × 10²⁸) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified
Unit of time
defined by Julian calendar year interval (s).
julia> year(Metric) # s
aⱼ⋅2⁷3³5² = 3.15576×10⁷ [s] Metric
julia> year(MPH) # h
aⱼ⋅2³3 = 8766.0 [h] MPH
julia> year(IAU) # D
aⱼ = 365.25 [D] IAU☉
Length Units
MeasureSystems.angstrom
— Constantangstrom(U::UnitSystem) = hecto*pico*meter(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁻⁹5⁻¹⁰ = 258.960507484(79)) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Metric unit of length
(m or ft).
julia> angstrom(CGS) # cm
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [cm] Gauss
julia> angstrom(English) # ft
ft⁻¹2⁻¹⁰5⁻¹⁰ = 3.280839895013123×10⁻¹⁰ [ft] English
julia> angstrom(IPS) # in
ft⁻¹2⁻⁸3⋅5⁻¹⁰ = 3.937007874015747×10⁻⁹ [in] IPS
MeasureSystems.inch
— Constantinch(U::UnitSystem) = length(𝟏,U,IPS)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁻¹3⁻¹ = 6.5775968901(20) × 10¹⁰) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
English unit of length
(m or ft).
julia> inch(Metric) # m
ft⋅2⁻²3⁻¹ = 0.0254 [m] Metric
julia> inch(English) # ft
2⁻²3⁻¹ = 0.08333333333333333 [ft] English
julia> inch(IPS) # in
𝟏 = 1.0 [in] IPS
MeasureSystems.foot
— Constantfoot(U::UnitSystem) = length(𝟏,U,English)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2 = 7.8931162681(24) × 10¹¹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
English unit of length
(m or ft).
julia> foot(Metric) # m
ft = 0.3048 [m] Metric
julia> foot(Survey) # ftUS
ft⋅ftUS⁻¹ = 0.9999980000000002 [ft] Survey
julia> foot(IPS) # in
2²3 = 12.0 [in] IPS
MeasureSystems.surveyfoot
— Constantsurveyfoot(U::UnitSystem) = length(𝟏,U,Survey)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ftUS⋅τ⋅2 = 7.8931320544(24) × 10¹¹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Survey unit of length
(m or ft).
julia> surveyfoot(Metric) # m
ftUS = 0.3048006096012192 [m] Metric
julia> surveyfoot(English) # ft
ft⁻¹ftUS = 1.0000020000039997 [ft] English
julia> surveyfoot(IPS) # in
ft⁻¹ftUS⋅2²3 = 12.000024000047997 [in] IPS
MeasureSystems.yard
— Constantyard(U::UnitSystem) = 𝟑*foot(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⋅3 = 2.36793488043(73) × 10¹²) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
English unit of length
(m or ft).
julia> yard(Metric) # m
ft⋅3 = 0.9144000000000001 [m] Metric
julia> yard(English) # ft
3 = 3.0 [ft] English
julia> yard(IPS) # in
2²3² = 36.0 [in] IPS
MeasureSystems.meter
— Constantmeter(U::UnitSystem) = length(𝟏,U,Metric)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2 = 2.58960507484(79) × 10¹²) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Metric unit of length
(m or ft).
julia> meter(CGS) # cm
2²5² = 100.0 [cm] Gauss
julia> meter(English) # ft
ft⁻¹ = 3.280839895013123 [ft] English
julia> meter(Meridian) # em
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 0.9985540395(10) [em] Meridian
MeasureSystems.earthmeter
— Constantearthmeter(U::UnitSystem) = greatcircle(U)/𝟐^9/𝟓^7
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻⁸5⁻⁷ = 2.5933549636(27) × 10¹²) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Meridian unit of length
as originally defined in France (m or ft).
julia> earthmeter(CGS) # cm
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁷5⁻⁵ = 100.144805430(10) [cm] Gauss
julia> earthmeter(English) # ft
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻⁹5⁻⁷ = 3.2855907293(33) [ft] English
julia> earthmeter(Meridian) # em
𝟏 = 1.0 [em] Meridian
MeasureSystems.mile
— Constantmile(U::UnitSystem) = length(𝟏,U,MPH)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁶3⋅5⋅11 = 4.1675653896(13) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Statute English
mile (m or ft).
julia> mile(Metric) # m
ft⋅2⁵3⋅5⋅11 = 1609.344 [m] Metric
julia> mile(English) # ft
2⁵3⋅5⋅11 = 5280.0 [ft] English
julia> mile(Nautical) # nm
ft⋅ftUS⁻¹2⁵3⋅5⋅11 = 5279.989440000001 [ft] Survey
MeasureSystems.statutemile
— Constantstatutemile(U::UnitSystem) = length(𝟐^5*𝟑*𝟓*𝟏𝟏,U,Survey)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ftUS⋅τ⋅2⁶3⋅5⋅11 = 4.1675737247(13) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Statute Survey
mile (m or ft).
julia> statutemile(Metric) # m
ftUS⋅2⁵3⋅5⋅11 = 1609.3472186944373 [m] Metric
julia> statutemile(English) # ft
ft⁻¹ftUS⋅2⁵3⋅5⋅11 = 5280.010560021119 [ft] English
julia> statutemile(Survey) # ftUS
2⁵3⋅5⋅11 = 5280.0 [ft] Survey
MeasureSystems.meridianmile
— Constantmeridianmile(U::UnitSystem) = length(𝟐^4*𝟓^5/𝟑^3,U,Metric)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁵3⁻³5⁵ = 4.7955649534(15) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Historic nautical mile as defined by naive meridian assumption (m or ft).
julia> meridianmile(Metric) # m
2⁴3⁻³5⁵ = 1851.8518518518522 [m] Metric
julia> meridianmile(English) # ft
ft⁻¹2⁴3⁻³5⁵ = 6075.629435209488 [ft] English
julia> meridianmile(Nautical) # nm
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 0.9985540395(10) [nm] Nautical
MeasureSystems.admiraltymile
— Constantadmiraltymile(U::UnitSystem) = length(𝟐^6*𝟓*𝟏𝟗,U,English)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁷5⋅19 = 4.7990146910(15) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Historic nautical mile as defined by the Clarke authalic radius (m or ft).
julia> admiraltymile(Metric) # m
ft⋅2⁶5⋅19 = 1853.1840000000002 [m] Metric
julia> admiraltymile(English) # ft
2⁶5⋅19 = 6080.0 [ft] English
julia> admiraltymile(Nautical) # nm
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹¹3³5³19 = 0.9992723594(10) [nm] Nautical
MeasureSystems.nauticalmile
— Constantnauticalmile(U::UnitSystem) = greatcircle(U)/𝟐^5/𝟑^3/𝟓^2
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻⁴3⁻³5⁻² = 4.8025091919(50) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Standard nauticalmile
as defined by earthradius
(m or ft).
julia> nauticalmile(Metric) # m
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁵3⁻³5⁻² = 1854.5334339(19) [m] Metric
julia> nauticalmile(Meridian) # em
2⁴3⁻³5⁵ = 1851.8518518518522 [em] Meridian
julia> nauticalmile(English) # ft
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻⁵3⁻³5⁻² = 6084.4272766(61) [ft] English
MeasureSystems.lunardistance
— Constantlunardistance(U::UnitSystem) = length(𝟏,U,IAUE)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁴3³5³⋅14237 = 9.9544160116(31) × 10²⁰) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Standard distance between the Earth and the Moon (m or ft).
julia> lunardistance(Metric) # m
2³3³5³⋅14237 = 3.84399×10⁸ [m] Metric
julia> lunardistance(Nautical) # nm
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁸3⁶5⁵⋅14237 = 207275.31409(21) [nm] Nautical
julia> lunardistance(Metric)/lightspeed(Metric) # s
𝘤⁻¹2³3³5³⋅14237 = 1.2822170463007445 [s] Metric
MeasureSystems.astronomicalunit
— Constantastronomicalunit(U::UnitSystem) = length(𝟏,U,IAU)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²au⋅τ⋅2 = 3.8739940515(12) × 10²³) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Standard astronomical unit from the International Astronomical Union (m or ft).
julia> astronomicalunit(Metric) # m
au = 1.495978707000(30) × 10¹¹ [m] Metric
julia> astronomicalunit(English) # ft
au⋅ft⁻¹ = 4.908066624016(98) × 10¹¹ [ft] English
julia> astronomicalunit(Metric)/lightspeed(Metric) # s
𝘤⁻¹au = 499.004783836(10) [s] Metric
MeasureSystems.jupiterdistance
— Constantjupiterdistance(U::UnitSystem) = length(𝟏,U,IAUJ)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁷3⋅5⁶⋅259493 = 2.01595316905(62) × 10²⁴) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Standard distance between the Sun and the planet Jupiter (m or ft).
julia> jupiterdistance(Metric) # m
2⁶3⋅5⁶⋅259493 = 7.78479×10¹¹ [m] Metric
julia> jupiterdistance(IAU) # au
au⁻¹2⁶3⋅5⁶⋅259493 = 5.20381069836(10) [au] IAU☉
julia> jupiterdistance(Metric)/lightspeed(Metric) # s
𝘤⁻¹2⁶3⋅5⁶⋅259493 = 2596.726432657622 [s] Metric
MeasureSystems.lightyear
— Constantlightyear(U::UnitSystem) = year(U)*lightspeed(U)
length : [L], [L], [L], [L], [L]
L⋅(𝘤⋅R∞⋅α⁻²aⱼ⋅τ⋅2⁸3³5² = 2.44995556434(75) × 10²⁸) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Unit of length
defined by distance traveled by light in 1 year
unit.
julia> lightyear(Metric) # m
𝘤⋅aⱼ⋅2⁷3³5² = 9.4607304725808×10¹⁵ [m] Metric
julia> lightyear(English) # ft
𝘤⋅aⱼ⋅ft⁻¹2⁷3³5² = 3.103914197040945×10¹⁶ [ft] English
julia> lightyear(IAU) # au
𝘤⋅aⱼ⋅au⁻¹2⁷3³5² = 63241.0770843(13) [au] IAU☉
MeasureSystems.parsec
— Constantparsec(U::UnitSystem) = astronomicalunit(U)*𝟐^2*𝟑^4*𝟓^3/τ
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²au⋅2⁸3⁴5³ = 7.9906863243(25) × 10²⁸) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified
Unit of length
defined at which 1 astronomicalunit
subtends an angle of 1 arcsecond.
julia> parsec(Metric) # m
au⋅τ⁻¹2⁷3⁴5³ = 3.085677581491(62) × 10¹⁶ [m] Metric
julia> parsec(English) # ft
au⋅ft⁻¹τ⁻¹2⁷3⁴5³ = 1.012361411250(20) × 10¹⁷ [ft] English
julia> parsec(IAU) # au
τ⁻¹2⁷3⁴5³ = 206264.80624709636 [au] IAU☉
Speed Units
MeasureSystems.bubnoff
— Constantbubnoff(U::UnitSystem) = meter(U)/year(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹aⱼ⁻¹2⁻⁷3⁻³5⁻² = 1.0570008340246158×10⁻¹⁶) [𝘤] Unified
Reference unit of erosion speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> bubnoff(CGS) # cm⋅s⁻¹
aⱼ⁻¹2⁻⁵3⁻³ = 3.1688087814028955×10⁻⁶ [cm⋅s⁻¹] Gauss
julia> bubnoff(English) # ft⋅s⁻¹
aⱼ⁻¹ft⁻¹2⁻⁷3⁻³5⁻² = 1.0396354269694539×10⁻⁷ [ft⋅s⁻¹] English
MeasureSystems.fpm
— Constantfpm(U::UnitSystem) = feet(U)/minute(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁻²3⁻¹5⁻¹ = 1.6945056036066124×10⁻¹¹) [𝘤] Unified
Feet per minute unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> fpm(CGS) # cm⋅s⁻¹
ft⋅3⁻¹5 = 0.508 [cm⋅s⁻¹] Gauss
julia> fpm(IPS) # in⋅s⁻¹
5⁻¹ = 0.2 [in⋅s⁻¹] IPS
julia> fpm(English) # ft⋅s⁻¹
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [ft⋅s⁻¹] English
MeasureSystems.ips
— Constantips(U::UnitSystem) = inch(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁻²3⁻¹ = 8.472528018033061×10⁻¹¹) [𝘤] Unified
Inch per second unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> ips(CGS) # cm⋅s⁻¹
ft⋅3⁻¹5² = 2.5399999999999996 [cm⋅s⁻¹] Gauss
julia> ips(English) # ft⋅s⁻¹
2⁻²3⁻¹ = 0.08333333333333333 [ft⋅s⁻¹] English
MeasureSystems.kmh
— Constantkmh(U::UnitSystem) = kilo(U)*meter(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹2⁻¹3⁻²5 = 9.265669311059779×10⁻¹⁰) [𝘤] Unified
Kilometers per hour unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> kmh(Metric) # m⋅s⁻¹
2⁻¹3⁻²5 = 0.2777777777777778 [m⋅s⁻¹] Metric
julia> kmh(MPH) # mi⋅h⁻¹
ft⁻¹2⁻²3⁻¹5²11⁻¹ = 0.6213711922373338 [mi⋅h⁻¹] MPH
julia> kmh(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁸3³5⁵ = 0.53921918134(54) [nm⋅h⁻¹] Nautical
MeasureSystems.fps
— Constantfps(U::UnitSystem) = feet(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft = 1.0167033621639674×10⁻⁹) [𝘤] Unified
Feet per second unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> fps(Metric) # m⋅s⁻¹
ft = 0.3048 [m⋅s⁻¹] Metric
julia> fps(KKH) # km⋅h⁻¹
ft⋅2⋅3²5⁻¹ = 1.09728 [km⋅h⁻¹] KKH
julia> fps(MPH) # mi⋅h⁻¹
2⁻¹3⋅5⋅11⁻¹ = 0.6818181818181819 [mi⋅h⁻¹] MPH
MeasureSystems.mph
— Constantmph(U::UnitSystem) = mile(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⋅3⁻¹5⁻¹11 = 1.4911649311738188×10⁻⁹) [𝘤] Unified
Miles per hour unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> mph(Metric) # m⋅s⁻¹
ft⋅2⋅3⁻¹5⁻¹11 = 0.44704 [m⋅s⁻¹] Metric
julia> mph(KKH) # km⋅h⁻¹
ft⋅2²3⋅5⁻²11 = 1.6093440000000003 [km⋅h⁻¹] KKH
julia> mph(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹⁰3⁴5³11 = 0.86778915418(87) [nm⋅h⁻¹] Nautical
MeasureSystems.knot
— Constantknot(U::UnitSystem) = nauticalmile(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁹3⁻⁵5⁻⁴ = 1.7183493525(17) × 10⁻⁹) [𝘤] Unified
Nautical miles per hour unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> knot(Metric) # m⋅s⁻¹
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁹3⁻⁵5⁻⁴ = 0.51514817608(52) [m⋅s⁻¹] Metric
julia> knot(KKH) # km⋅h⁻¹
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁸3⁻³5⁻⁵ = 1.8545334339(19) [km⋅h⁻¹] KKH
julia> knot(MPH) # mi⋅h⁻¹
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻¹⁰3⁻⁴5⁻³11⁻¹ = 1.1523536509(12) [mi⋅h⁻¹] MPH
MeasureSystems.ms
— Constantms(U::UnitSystem) = meter(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ = 3.3356409519815204×10⁻⁹) [𝘤] Unified
Meters per second unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> ms(KKH) # km⋅h⁻¹
2⋅3²5⁻¹ = 3.6 [km⋅h⁻¹] KKH
julia> ms(MPH) # mi⋅h⁻¹
ft⁻¹2⁻¹3⋅5⋅11⁻¹ = 2.236936292054402 [mi⋅h⁻¹] MPH
julia> ms(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹3⁵5⁴ = 1.9411890528(19) [nm⋅h⁻¹] Nautical
MeasureSystems.mps
— Constantmps(U::UnitSystem) = mile(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁵3⋅5⋅11 = 5.368193752225748×10⁻⁶) [𝘤] Unified
Miles per second unit of speed
(m⋅s⁻¹ or ft⋅s⁻¹).
julia> mps(KKH) # km⋅h⁻¹
ft⋅2⁶3³11 = 5793.638400000001 [km⋅h⁻¹] KKH
julia> mps(MPH) # mi⋅h⁻¹
2⁴3²5² = 3600.0 [mi⋅h⁻¹] MPH
julia> mps(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹⁴3⁶5⁵11 = 3124.0409550(31) [nm⋅h⁻¹] Nautical
Area Units
MeasureSystems.barn
— Constantbarn(U::UnitSystem) = area((𝟐*𝟓)^-28,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴τ²2⁻²⁶5⁻²⁸ = 0.00067060544436(41)) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified
Unit of area
defined by 100
square femto-meters (m² or ft²).
julia> barn(Metric) # m²
2⁻²⁸5⁻²⁸ = 1.0×10⁻²⁸ [m²] Metric
julia> barn(CGS) # cm²
2⁻²⁴5⁻²⁴ = 1.0×10⁻²⁴ [cm²] Gauss
julia> barn(English) # ft²
ft⁻²2⁻²⁸5⁻²⁸ = 1.076391041670972×10⁻²⁷ [ft²] English
MeasureSystems.hectare
— Constanthectare(U::UnitSystem) = area(hecto^2,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴τ²2⁶5⁴ = 6.7060544436(41) × 10²⁸) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified
Metric unit of land area
defined by 100
square meters (m² or ft²).
julia> hectare(Metric) # m²
2⁴5⁴ = 10000.0 [m²] Metric
julia> hectare(English) # ft²
ft⁻²2⁴5⁴ = 107639.1041670972 [ft²] English
julia> hectare(Survey) # ftUS²
ftUS⁻²2⁴5⁴ = 107638.67361111114 [ft²] Survey
MeasureSystems.acre
— Constantacre(U::UnitSystem) = area(𝟐^4*𝟓^4,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴ft²τ²2⁵3²5⋅11² = 2.7138439494(17) × 10²⁸) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified
English unit of land area
(m² or ft²).
julia> acre(Metric) # m²
ft²2³3²5⋅11² = 4046.8564224 [m²] Metric
julia> acre(English) # ft²
2³3²5⋅11² = 43560.0 [ft²] English
julia> acre(Survey) # ftUS²
ft²ftUS⁻²2³3²5⋅11² = 43559.82576017426 [ft²] Survey
MeasureSystems.surveyacre
— Constantsurveyacre(U::UnitSystem) = area(𝟐^3*𝟑^2*𝟓*𝟏𝟏^2,U,Survey)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴ftUS²τ²2⁵3²5⋅11² = 2.7138548048(17) × 10²⁸) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified
Survey unit of land area
(m² or ft²).
julia> surveyacre(Metric) # m²
ftUS²2³3²5⋅11² = 4046.8726098742513 [m²] Metric
julia> surveyacre(English) # ft²
ft⁻²ftUS²2³3²5⋅11² = 43560.174240522705 [ft²] English
julia> surveyacre(Survey) # ftUS²
2³3²5⋅11² = 43560.0 [ft²] Survey
Volume Units
MeasureSystems.liter
— Constantliter(U::UnitSystem) = volume(𝟏𝟎^-3,U,Metric)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³5⁻³ = 1.7366032619(16) × 10³⁴) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
Unit of volume
derived from 1 cubic decimeter (m³ or ft³).
julia> liter(Metric) # m³
2⁻³5⁻³ = 0.001 [m³] Metric
julia> liter(CGS) # cm³
2³5³ = 1000.0 [mL] Gauss
julia> liter(IPS) # in³
ft⁻³2³3³5⁻³ = 61.02374409473227 [in³] IPS
MeasureSystems.gallon
— Constantgallon(U::UnitSystem) = volume(𝟕*𝟏𝟏/𝟐^2,U,English)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻³3⁻²7⋅11 = 6.5737584518(60) × 10³⁴) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
Unit of volume
derived from the US liquid gallon
in cubic inches (m³ or ft³).
julia> gallon(Metric) # m³
ft³2⁻⁶3⁻²7⋅11 = 0.0037854117839999997 [m³] Metric
julia> gallon(CGS) # cm³
ft³3⁻²5⁶7⋅11 = 3785.411784000001 [mL] Gauss
julia> gallon(IPS) # in³
3⋅7⋅11 = 231.0 [in³] IPS
MeasureSystems.quart
— Constantquart(U::UnitSystem) = gallon(U)/𝟐^2
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁵3⁻²7⋅11 = 1.6434396130(15) × 10³⁴) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
English unit of volume
(m³ or ft³).
julia> quart(Metric) # m³
ft³2⁻⁸3⁻²7⋅11 = 0.0009463529459999999 [m³] Metric
julia> quart(CGS) # cm³
ft³2⁻²3⁻²5⁶7⋅11 = 946.3529460000002 [mL] Gauss
julia> quart(IPS) # in³
2⁻²3⋅7⋅11 = 57.75 [in³] IPS
MeasureSystems.pint
— Constantpint(U::UnitSystem) = quart(U)/𝟐
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁶3⁻²7⋅11 = 8.2171980648(76) × 10³³) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
English unit of volume
(m³ or ft³).
julia> pint(Metric) # m³
ft³2⁻⁹3⁻²7⋅11 = 0.00047317647299999996 [m³] Metric
julia> pint(CGS) # cm³
ft³2⁻³3⁻²5⁶7⋅11 = 473.1764730000001 [mL] Gauss
julia> pint(IPS) # in³
2⁻³3⋅7⋅11 = 28.875 [in³] IPS
MeasureSystems.cup
— Constantcup(U::UnitSystem) = pint(U)/𝟐
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁷3⁻²7⋅11 = 4.1085990324(38) × 10³³) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
English unit of volume
(m³ or ft³).
julia> cup(Metric) # m³
ft³2⁻¹⁰3⁻²7⋅11 = 0.00023658823649999998 [m³] Metric
julia> cup(CGS) # cm³
ft³2⁻⁴3⁻²5⁶7⋅11 = 236.58823650000005 [mL] Gauss
julia> cup(IPS) # in³
2⁻⁴3⋅7⋅11 = 14.4375 [in³] IPS
MeasureSystems.fluidounce
— Constantfluidounce(U::UnitSystem) = cup(U)/𝟐^3
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻¹⁰3⁻²7⋅11 = 5.1357487905(47) × 10³²) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
English unit of volume
(m³ or ft³).
julia> fluidounce(Metric) # m³
ft³2⁻¹³3⁻²7⋅11 = 2.9573529562499998×10⁻⁵ [m³] Metric
julia> fluidounce(CGS) # cm³
ft³2⁻⁷3⁻²5⁶7⋅11 = 29.573529562500006 [mL] Gauss
julia> fluidounce(IPS) # in³
2⁻⁷3⋅7⋅11 = 1.8046875 [in³] IPS
MeasureSystems.teaspoon
— Constantteaspoon(U::UnitSystem) = 𝟓*milli*liter(U)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³2⁻³5⁻⁵ = 8.6830163097(80) × 10³¹) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
Measuring teaspoon
unit of volume
(m³ or ft³).
julia> teaspoon(Metric) # m³
2⁻⁶5⁻⁵ = 5.0×10⁻⁶ [m³] Metric
julia> teaspoon(CGS) # cm³
5 = 5.0 [mL] Gauss
julia> teaspoon(IPS) # in³
ft⁻³3³5⁻⁵ = 0.3051187204736614 [in³] IPS
MeasureSystems.tablespoon
— Constanttablespoon(U::UnitSystem) = 𝟑*teaspoon(U)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³2⁻³3⋅5⁻⁵ = 2.6049048929(24) × 10³²) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified
Measuring tablespoon
unit of volume
(m³ or ft³).
julia> tablespoon(Metric) # m³
2⁻⁶3⋅5⁻⁵ = 1.5000000000000002×10⁻⁵ [m³] Metric
julia> tablespoon(CGS) # cm³
3⋅5 = 15.0 [mL] Gauss
julia> tablespoon(IPS) # in³
ft⁻³3⁴5⁻⁵ = 0.9153561614209842 [in³] IPS
Mass Units
MeasureSystems.gram
— Constantgram(U::UnitSystem) = mass(𝟏,U,Gauss)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻⁴5⁻³ = 1.09776910575(34) × 10²⁷) [mₑ] Unified
Metric gram
unit of mass
(kg or lb).
julia> gram(Metric) # kg
2⁻³5⁻³ = 0.001 [kg] Metric
julia> gram(CGS) # g
𝟏 = 1.0 [g] Gauss
julia> gram(English) # lb
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [lbm] English
julia> gram(British) # slug
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [slug] British
julia> gram(Gravitational) # hyl
g₀⁻¹2⁻³5⁻³ = 0.00010197162129779284 [hyl] Gravitational
MeasureSystems.earthgram
— Constantearthgram(U::UnitSystem) = mass(milli,U,Meridian)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⁻³ᐟ²GME³ᐟ²τ³2⁻³¹5⁻²⁴ = 1.1025449025(33) × 10²⁷) [mₑ] Unified
Meridian gram
unit of mass
based on earthmeter
(kg or lb).
julia> earthgram(Meridian) # keg
2⁻³5⁻³ = 0.001 [keg] Meridian
julia> earthgram(CGS) # g
g₀⁻³ᐟ²GME³ᐟ²τ³2⁻²⁷5⁻²¹ = 1.0043504565(30) [g] Gauss
julia> earthgram(English) # lb
g₀⁻³ᐟ²lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.0022142137367(67) [lbm] English
julia> earthgram(British) # slug
g₀⁻⁵ᐟ²ft⋅lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 6.881986682(21) × 10⁻⁵ [slug] British
julia> earthgram(Gravitational) # hyl
g₀⁻⁵ᐟ²GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.00010241524440(31) [hyl] Gravitational
MeasureSystems.kilogram
— Constantkilogram(U::UnitSystem) = mass(𝟏,U,Metric)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻¹ = 1.09776910575(34) × 10³⁰) [mₑ] Unified
Metric kilogram
unit of mass
(kg or lb).
julia> kilogram(Metric) # kg
𝟏 = 1.0 [kg] Metric
julia> kilogram(CGS) # g
2³5³ = 1000.0 [g] Gauss
julia> kilogram(English) # lb
lb⁻¹ = 2.2046226218487757 [lbm] English
julia> kilogram(British) # slug
g₀⁻¹ft⋅lb⁻¹ = 0.06852176585679176 [slug] British
julia> kilogram(Gravitational) # hyl
g₀⁻¹ = 0.10197162129779283 [hyl] Gravitational
MeasureSystems.tonne
— Constanttonne(U::UnitSystem) = mass(𝟏,U,MTS)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2²5³ = 1.09776910575(34) × 10³³) [mₑ] Unified
Metric tonne
unit of mass
(kg or lb).
julia> tonne(Metric) # kg
2³5³ = 1000.0 [kg] Metric
julia> tonne(MTS) # t
𝟏 = 1.0 [t] MTS
julia> tonne(English) # lb
lb⁻¹2³5³ = 2204.6226218487755 [lbm] English
julia> tonne(British) # slug
g₀⁻¹ft⋅lb⁻¹2³5³ = 68.52176585679176 [slug] British
julia> tonne(Gravitational) # hyl
g₀⁻¹2³5³ = 101.97162129779284 [hyl] Gravitational
MeasureSystems.ton
— Constantton(U::UnitSystem) = mass(𝟐*kilo,U,English)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2³5³ = 9.9587938078(31) × 10³²) [mₑ] Unified
English ton
unit of mass
(kg or lb).
julia> ton(Metric) # kg
lb⋅2⁴5³ = 907.18474 [kg] Metric
julia> ton(MTS) # t
lb⋅2 = 0.90718474 [t] MTS
julia> ton(English) # lb
2⁴5³ = 2000.0 [lbm] English
julia> ton(British) # slug
g₀⁻¹ft⋅2⁴5³ = 62.16190034313451 [slug] British
julia> ton(Gravitational) # hyl
g₀⁻¹lb⋅2⁴5³ = 92.50709875441665 [hyl] Gravitational
MeasureSystems.pound
— Constantpound(U::UnitSystem) = mass(𝟏,U,English)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻¹ = 4.9793969039(15) × 10²⁹) [mₑ] Unified
English pound
unit of mass
(kg or lb).
julia> pound(Metric) # kg
lb = 0.45359237 [kg] Metric
julia> pound(CGS) # g
lb⋅2³5³ = 453.59237 [g] Gauss
julia> pound(English) # lb
𝟏 = 1.0 [lbm] English
julia> pound(British) # slug
g₀⁻¹ft = 0.031080950171567256 [slug] British
julia> pound(Gravitational) # hyl
g₀⁻¹lb = 0.046253549377208325 [hyl] Gravitational
MeasureSystems.ounce
— Constantounce(U::UnitSystem) = pound(U)/𝟐^4
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻⁵ = 3.11212306494(95) × 10²⁸) [mₑ] Unified
English ounce
unit of mass
(kg or lb).
julia> ounce(Metric) # kg
lb⋅2⁻⁴ = 0.028349523125 [kg] Metric
julia> ounce(CGS) # g
lb⋅2⁻¹5³ = 28.349523125 [g] Gauss
julia> ounce(English) # lb
2⁻⁴ = 0.0625 [lbm] English
julia> ounce(British) # slug
g₀⁻¹ft⋅2⁻⁴ = 0.0019425593857229535 [slug] British
julia> ounce(Gravitational) # hyl
g₀⁻¹lb⋅2⁻⁴ = 0.0028908468360755203 [hyl] Gravitational
MeasureSystems.grain
— Constantgrain(U::UnitSystem) = milli(U)*pound(U)/𝟕
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻⁴5⁻³7⁻¹ = 7.1134241484(22) × 10²⁵) [mₑ] Unified
Ideal grain
seed of cereal, unit of mass
(kg or lb).
julia> grain(Metric) # kg
lb⋅2⁻³5⁻³7⁻¹ = 6.479891×10⁻⁵ [kg] Metric
julia> grain(CGS) # g
lb⋅7⁻¹ = 0.06479891 [g] Gauss
julia> grain(English) # lb
2⁻³5⁻³7⁻¹ = 0.00014285714285714284 [lbm] English
julia> grain(QCD) # mₚ
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹lb⋅2⁻⁴5⁻³7⁻¹ = 3.8740918723(12) × 10²² [mₚ] QCD
MeasureSystems.slug
— Constantslug(U::UnitSystem) = mass(𝟏,U,British)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⁻¹ = 1.60207357768(49) × 10³¹) [mₑ] Unified
British gravitational slug
unit of mass
(kg or lb).
julia> slug(Metric) # kg
g₀⋅ft⁻¹lb = 14.593902937206364 [kg] Metric
julia> slug(CGS) # g
g₀⋅ft⁻¹lb⋅2³5³ = 14593.902937206363 [g] Gauss
julia> slug(English) # lb
g₀⋅ft⁻¹ = 32.17404855643044 [lbm] English
julia> slug(British) # slug
𝟏 = 1.0 [slug] British
julia> slug(Gravitational) # hyl
ft⁻¹lb = 1.4881639435695537 [hyl] Gravitational
MeasureSystems.slinch
— Constantslinch(U::UnitSystem) = mass(𝟏,U,IPS)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⋅3 = 1.92248829321(59) × 10³²) [mₑ] Unified
British gravitational slinch
unit of mass
(kg or lb).
julia> slinch(Metric) # kg
g₀⋅ft⁻¹lb⋅2²3 = 175.12683524647636 [kg] Metric
julia> slinch(CGS) # g
g₀⋅ft⁻¹lb⋅2⁵3⋅5³ = 175126.83524647637 [g] Gauss
julia> slinch(English) # lb
g₀⋅ft⁻¹2²3 = 386.0885826771653 [lbm] English
julia> slinch(British) # slug
2²3 = 12.0 [slug] British
julia> slinch(Gravitational) # hyl
ft⁻¹lb⋅2²3 = 17.857967322834646 [hyl] Gravitational
MeasureSystems.hyl
— Constanthyl(U::UnitSystem) = mass(𝟏,U,Gravitational)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅2⁻¹ = 1.07654374009(33) × 10³¹) [mₑ] Unified
Gravitational Metric hyl
unit of mass
(kg or lb).
julia> hyl(Metric) # kg
g₀ = 9.80665 [kg] Metric
julia> hyl(CGS) # g
g₀⋅2³5³ = 9806.65 [g] Gauss
julia> hyl(English) # lb
g₀⋅lb⁻¹ = 21.619962434553294 [lbm] English
julia> hyl(British) # slug
ft⋅lb⁻¹ = 0.6719689751395068 [slug] British
julia> hyl(Gravitational) # hyl
𝟏 = 1.0 [hyl] Gravitational
Force Units
MeasureSystems.dyne
— Constantdyne(U::UnitSystem) = force(𝟏,U,Gauss)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴τ⁻¹2⁻⁷5⁻⁵ = 4.7166761794(29) × 10⁻⁵) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified
Historical dyne
unit of force
(N or lb).
julia> dyne(Metric) # N
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [N] Metric
julia> dyne(CGS) # dyn
𝟏 = 1.0 [dyn] Gauss
julia> dyne(English) # lb
g₀⁻¹lb⁻¹2⁻⁵5⁻⁵ = 2.248089430997105×10⁻⁶ [lbf] English
julia> dyne(FPS) # pdl
ft⁻¹lb⁻¹2⁻⁵5⁻⁵ = 7.233013851209893×10⁻⁵ [pdl] FPS
julia> dyne(Engineering) # kp
g₀⁻¹2⁻⁵5⁻⁵ = 1.0197162129779284×10⁻⁶ [kgf] Engineering
MeasureSystems.newton
— Constantnewton(U::UnitSystem) = force(𝟏,U,Metric)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 4.7166761794(29)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified
Metric newton
unit of force
(N or lb).
julia> newton(Metric) # N
𝟏 = 1.0 [N] Metric
julia> newton(CGS) # dyn
2⁵5⁵ = 100000.0 [dyn] Gauss
julia> newton(English) # lb
g₀⁻¹lb⁻¹ = 0.22480894309971047 [lbf] English
julia> newton(FPS) # pdl
ft⁻¹lb⁻¹ = 7.233013851209893 [pdl] FPS
julia> newton(Engineering) # kp
g₀⁻¹ = 0.10197162129779283 [kgf] Engineering
MeasureSystems.poundal
— Constantpoundal(U::UnitSystem) = force(𝟏,U,FPS)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴ft⋅lb⋅τ⁻¹2⁻² = 0.65210384999(40)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified
Absolute English poundal
unit of force
(N or lb).
julia> poundal(Metric) # N
ft⋅lb = 0.13825495437600002 [N] Metric
julia> poundal(CGS) # dyn
ft⋅lb⋅2⁵5⁵ = 13825.495437600002 [dyn] Gauss
julia> poundal(English) # lb
g₀⁻¹ft = 0.031080950171567256 [lbf] English
julia> poundal(FPS) # pdl
𝟏 = 1.0 [pdl] FPS
julia> poundal(Engineering) # kp
g₀⁻¹ft⋅lb = 0.014098081850173099 [kgf] Engineering
MeasureSystems.poundforce
— Constantpoundforce(U::UnitSystem) = force(𝟏,U,English)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴g₀⋅lb⋅τ⁻¹2⁻² = 20.9808209330(13)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified
English poundforce
unit of force
used in engineering systems (N or lb).
julia> poundforce(Metric) # N
g₀⋅lb = 4.4482216152605 [N] Metric
julia> poundforce(CGS) # dyn
g₀⋅lb⋅2⁵5⁵ = 444822.16152604995 [dyn] Gauss
julia> poundforce(English) # lb
𝟏 = 1.0 [lbf] English
julia> poundforce(FPS) # pdl
g₀⋅ft⁻¹ = 32.17404855643044 [pdl] FPS
julia> poundforce(Engineering) # kp
lb = 0.45359237 [kgf] Engineering
MeasureSystems.kilopond
— Constantkilopond(U::UnitSystem) = force(𝟏,U,Engineering)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴g₀⋅τ⁻¹2⁻² = 46.254792454(28)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified
Gravitational kilopond
unit of force
used in engineering systems (N or lb).
julia> kilopond(Metric) # N
g₀ = 9.80665 [N] Metric
julia> kilopond(CGS) # dyn
g₀⋅2⁵5⁵ = 980665.0 [dyn] Gauss
julia> kilopond(English) # lb
lb⁻¹ = 2.2046226218487757 [lbf] English
julia> kilopond(FPS) # pdl
g₀⋅ft⁻¹lb⁻¹ = 70.9316352839675 [pdl] FPS
julia> kilopond(Engineering) # kp
𝟏 = 1.0 [kgf] Engineering
Pressure Units
MeasureSystems.psi
— Constantpsi(U::UnitSystem) = pressure(𝟏,U,IPS)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸g₀⋅ft⁻²lb⋅τ⁻³3² = 4.8493995628(59) × 10⁻²¹) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
English unit of pressure
(Pa or lb⋅ft⁻²).
julia> psi(Metric) # Pa
g₀⋅ft⁻²lb⋅2⁴3² = 6894.75729316836 [Pa] Metric
julia> psi(English) # lb⋅ft⁻²
2⁴3² = 144.0 [lbf⋅ft⁻²] English
julia> psi(IPS) # lb⋅in⁻²
𝟏 = 1.0 [lb⋅in⁻²] IPS
MeasureSystems.pascal
— Constantpascal(U::UnitSystem) = pressure(𝟏,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 7.0334594194(86) × 10⁻²⁵) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Metric unit of pressure
(Pa or lb⋅ft⁻²).
julia> pascal(Metric) # Pa
𝟏 = 1.0 [Pa] Metric
julia> pascal(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹ = 0.02088543423315013 [lbf⋅ft⁻²] English
julia> pascal(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⁻⁴3⁻² = 0.0001450377377302092 [lb⋅in⁻²] IPS
MeasureSystems.barye
— Constantbarye(U::UnitSystem) = pressure(𝟏,U,Gauss)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁵5⁻¹ = 7.0334594194(86) × 10⁻²⁶) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Historical unit of pressure
(Pa or lb⋅ft⁻²).
julia> barye(Metric) # Pa
2⁻¹5⁻¹ = 0.1 [Pa] Metric
julia> barye(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lbf⋅ft⁻²] English
julia> barye(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⁻⁵3⁻²5⁻¹ = 1.4503773773020924×10⁻⁵ [lb⋅in⁻²] IPS
MeasureSystems.bar
— Constantbar(U::UnitSystem) = pressure(hecto*kilo,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⋅5⁵ = 7.0334594194(86) × 10⁻²⁰) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Reference unit of pressure
(Pa or lb⋅ft⁻²).
julia> bar(Metric) # Pa
2⁵5⁵ = 100000.0 [Pa] Metric
julia> bar(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁵5⁵ = 2088.543423315013 [lbf⋅ft⁻²] English
julia> bar(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⋅3⁻²5⁵ = 14.503773773020923 [lb⋅in⁻²] IPS
MeasureSystems.technicalatmosphere
— Constanttechnicalatmosphere(U::UnitSystem) = kilopond(U)/(centi*meter(U))^2
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸g₀⋅τ⁻³5⁴ = 6.8974674816(85) × 10⁻²⁰) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Gravitational Metric unit of pressure
(Pa or lb⋅ft⁻²).
julia> technicalatmosphere(Metric) # Pa
g₀⋅2⁴5⁴ = 98066.5 [Pa] Metric
julia> technicalatmosphere(English) # lb⋅ft⁻²
ft²lb⁻¹2⁴5⁴ = 2048.161436225217 [lbf⋅ft⁻²] English
julia> technicalatmosphere(IPS) # lb⋅in⁻²
ft²lb⁻¹3⁻²5⁴ = 14.223343307119563 [lb⋅in⁻²] IPS
MeasureSystems.atmosphere
— Constantatmosphere(U::UnitSystem) = pressure(atm = 101325.0,U)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸atm⋅τ⁻³2⁻⁴ = 7.1266527568(87) × 10⁻²⁰) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Standard pressure
reference level of one atmosphere atm
(Pa or lb⋅ft⁻²).
julia> atmosphere(Metric) # Pa
atm = 101325.0 [Pa] Metric
julia> atmosphere(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹atm = 2116.2166236739367 [lbf⋅ft⁻²] English
julia> atmosphere(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻⁴3⁻² = 14.695948775513449 [lb⋅in⁻²] IPS
MeasureSystems.inchmercury
— Constantinchmercury(U::UnitSystem) = pressure(inHg,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸inHg⁻¹τ⁻³2⁻⁴ = 2.3818029610(29) × 10⁻²¹) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Unit of pressure
exerted by 1 inch of mercury at standard atmospheric conditions.
juila> inchmercury(Metric) # Pa
inHg⁻¹ = 3386.3890000000006 [Pa] Metric
julia> inchmercury(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹inHg⁻¹ = 70.72620474736304 [lbf⋅ft⁻²] English
julia> inchmercury(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹inHg⁻¹2⁻⁴3⁻² = 0.49115419963446555 [lb⋅in⁻²] IPS
MeasureSystems.torr
— Constanttorr(U::UnitSystem) = pressure(atm/𝟐^3/𝟓/𝟏𝟗,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸atm⋅τ⁻³2⁻⁷5⁻¹19⁻¹ = 9.377174680(11) × 10⁻²³) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Unit of pressure
exerted by 1 mm of mercury at standard atmospheric conditions.
juila> torr(Metric) # Pa
atm⋅2⁻³5⁻¹19⁻¹ = 133.32236842105263 [Pa] Metric
julia> torr(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻³5⁻¹19⁻¹ = 2.784495557465706 [lbf⋅ft⁻²] English
julia> torr(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻⁷3⁻²5⁻¹19⁻¹ = 0.01933677470462296 [lb⋅in⁻²] IPS
Energy Units
MeasureSystems.erg
— Constanterg(U::UnitSystem) = energy(𝟏,U,Gauss)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⁻⁸5⁻⁷ = 1.22143285705(37) × 10⁶) [𝘤²mₑ⋅g₀⁻¹] Unified
Historical unit of energy
(J or lb⋅ft).
julia> erg(Metric) # J
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J] Metric
julia> erg(CGS) # erg
𝟏 = 1.0 [erg] Gauss
julia> erg(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹2⁻⁷5⁻⁷ = 7.375621492772653×10⁻⁸ [lb⋅ft] British
MeasureSystems.joule
— Constantjoule(U::UnitSystem) = energy(𝟏,U,Metric)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⁻¹ = 1.22143285705(37) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified
Metric unit of energy
(J or lb⋅ft).
julia> joule(Metric) # J
𝟏 = 1.0 [J] Metric
julia> joule(CGS) # erg
2⁷5⁷ = 1.0×10⁷ [erg] Gauss
julia> joule(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹ = 0.7375621492772653 [lb⋅ft] British
MeasureSystems.footpound
— Constantfootpound(U::UnitSystem) = poundforce(U)*foot(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²g₀⋅ft⋅lb⋅2⁻¹ = 1.65604059027(51) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified
English unit of energy
in gravitational and engineering systems (J or lb⋅ft).
julia> footpound(Metric) # J
g₀⋅ft⋅lb = 1.3558179483314003 [J] Metric
julia> footpound(CGS) # erg
g₀⋅ft⋅lb⋅2⁷5⁷ = 1.3558179483314004×10⁷ [erg] Gauss
julia> footpound(British) # lb⋅ft
𝟏 = 1.0 [lb⋅ft] British
MeasureSystems.calorie
— Constantcalorie(U::UnitSystem) = kilocalorie(U)/𝟐^3/𝟓^3
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2⋅3²5⋅43⁻¹ = 5.1138185304(16) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified
Heat energy required to raise 1 g of water by 1 Kelvin (cal
) in International
units.
julia> calorie(International) # J
2²3²5⋅43⁻¹ = 4.186046511627907 [J] International
julia> calorie(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 4.186737323211057 [J] Metric
julia> calorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 3.087978978566891 [lbf⋅ft] English
MeasureSystems.kilocalorie
— Constantkilocalorie(U::UnitSystem) = energy(𝟐^5*𝟓^4*𝟑^2/𝟒𝟑,U,International)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2⁴3²5⁴43⁻¹ = 5.1138185304(16) × 10¹⁶) [𝘤²mₑ⋅g₀⁻¹] Unified
Heat energy required to raise 1 kg of water by 1 Kelvin (kcal
) in International
units.
julia> kilocalorie(International) # J
2⁵3²5⁴43⁻¹ = 4186.0465116279065 [J] International
julia> kilocalorie(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2⁵3²5⁴43⁻¹ = 4186.737323211056 [J] Metric
julia> kilocalorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵3²5⁴43⁻¹ = 3087.978978566891 [lbf⋅ft] English
MeasureSystems.meancalorie
— Constantmeancalorie(U::UnitSystem) = energy(𝟐^2*𝟓*𝟑^2/𝟒𝟑,U,InternationalMean)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⋅3²5⋅43⁻¹⋅1.0001900224889804 = 5.1139463306(16) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified
Heat energy required to raise 1 g of water by 1 Kelvin (cal
) in InternationalMean
units.
julia> meancalorie(InternationalMean) # J
2²3²5⋅43⁻¹ = 4.186046511627907 [J] InternationalMean
julia> meancalorie(Metric) # J
2²3²5⋅43⁻¹⋅1.0001900224889804 = 4.186841954605034 [J] Metric
julia> meancalorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹2²3²5⋅43⁻¹⋅1.0001900224889804 = 3.0880561507227156 [lbf⋅ft] English
MeasureSystems.earthcalorie
— Constantearthcalorie(U::UnitSystem) = calorie(U)*(sqrt(g₀/GME)/τ)^3*𝟐^27*𝟓^21
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²g₀⁻³ᐟ²Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁶3²5⁻²⁰43⁻¹ = 5.136065976(16) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified
Heat energy required to raise 1 earthgram
of water by 1 kelvin
in Meridian
units.
julia> earthcalorie(Meridian) # J
g₀⋅Ωᵢₜ⁻¹Vᵢₜ²GME⁻¹τ⁻²2²⁰3²5¹⁵43⁻¹ = 4.1746383635(84) [eJ] Meridian
julia> earthcalorie(Metric) # J
g₀⁻³ᐟ²Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁵3²5⁻²⁰43⁻¹ = 4.204951542(13) [J] Metric
julia> earthcalorie(British) # ft⋅lb
g₀⁻⁵ᐟ²ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁵3²5⁻²⁰43⁻¹ = 3.1014130969(93) [lb⋅ft] British
MeasureSystems.thermalunit
— Constantthermalunit(U::UnitSystem) = kilocalorie(U)*𝟑^2/𝟓/lb
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁴5⁵43⁻¹ = 1.28866059275(39) × 10¹⁶) [𝘤²mₑ⋅g₀⁻¹] Unified
Heat energy required to raise 1 lb of water by 1 Rankine (BTU
) in International
units.
julia> thermalunit(British) # ft⋅lb
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 778.1576129990752 [lb⋅ft] British
julia> thermalunit(International) # J
lb⋅2⁵5⁵43⁻¹ = 1054.8659767441861 [J] International
julia> thermalunit(Metric) # J
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 1055.0400583348662 [J] Metric
MeasureSystems.gasgallon
— Constantgasgallon(U::UnitSystem) = 𝟐*𝟑*𝟏𝟗*kilo*thermalunit(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁸3⋅5⁸19⋅43⁻¹ = 1.46907307574(45) × 10²¹) [𝘤²mₑ⋅g₀⁻¹] Unified
Gasoline gallon equivalent reference unit of energy
(J or lb⋅ft).
julia> gasgallon(Metric) # J
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁹3⋅5⁸19⋅43⁻¹ = 1.2027456665017475×10⁸ [J] Metric
julia> gasgallon(CGS) # erg
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2¹⁶3⋅5¹⁵19⋅43⁻¹ = 1.2027456665017475×10¹⁵ [erg] Gauss
julia> gasgallon(British) # lb⋅ft
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁹3⋅5⁸19⋅43⁻¹ = 8.870996788189459×10⁷ [lb⋅ft] British
MeasureSystems.tontnt
— Constanttontnt(U::UnitSystem) = giga*calorie(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2¹⁰3²5¹⁰43⁻¹ = 5.1138185304(16) × 10²²) [𝘤²mₑ⋅g₀⁻¹] Unified
Ton TNT equivalent reference unit of energy
(J or lb⋅ft).
julia> tontnt(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2¹¹3²5¹⁰43⁻¹ = 4.186737323211056×10⁹ [J] Metric
julia> tontnt(CGS) # erg
Ωᵢₜ⁻¹Vᵢₜ²2¹⁸3²5¹⁷43⁻¹ = 4.186737323211057×10¹⁶ [erg] Gauss
julia> tontnt(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2¹¹3²5¹⁰43⁻¹ = 3.087978978566891×10⁹ [lb⋅ft] British
MeasureSystems.electronvolt
— Constantelectronvolt(U::UnitSystem) = elementarycharge(U)*volt(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹𝘦⋅R∞⁻¹α²2⁻¹ = 1.95695118356(60) × 10⁻⁶) [𝘤²mₑ⋅g₀⁻¹] Unified
Unit of energy
gained by a rest electron accelerated by 1 volt
in vacuum (J or lb⋅ft).
julia> electronvolt(SI2019) # J
𝘦 = 1.602176634×10⁻¹⁹ [J] SI2019
julia> electronvolt(SI2019)/lightspeed(SI2019) # kg⋅m⋅s⁻¹
𝘤⁻¹𝘦 = 5.344285992678308×10⁻²⁸ [N⋅s] SI2019
julia> electronvolt(SI2019)/lightspeed(SI2019)^2 # kg
𝘤⁻²𝘦 = 1.7826619216278975×10⁻³⁶ [kg] SI2019
julia> electronvolt(SI2019)/planck(SI2019)/lightspeed(SI2019) # m⁻¹
𝘩⁻¹𝘤⁻¹𝘦 = 806554.393734921 [m⁻¹] SI2019
julia> electronvolt(SI2019)/boltzmann(SI2019) # K
kB⁻¹𝘦 = 11604.518121550082 [K] SI2019
Power Units
MeasureSystems.watt
— Constantwatt(U::UnitSystem) = power(𝟏,U,Metric)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴τ⁻¹2⁻² = 1.57331382212(96) × 10⁻⁸) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified
Metric watt
unit of power
(W or lb⋅ft⋅s⁻¹).
julia> watt(Metric) # W
𝟏 = 1.0 [W] Metric
julia> watt(English) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹lb⁻¹ = 0.7375621492772653 [lbf⋅ft⋅s⁻¹] English
julia> watt(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹ = 0.10197162129779283 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepowerwatt
— Constanthorsepowerwatt(U::UnitSystem) = power(𝟐^4*𝟑^3/𝟓*τ,U,British)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅ft⋅lb⋅2²3³5⁻¹ = 1.15800476849(71) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified
Unit of power
derived from Watt's exact original horse power estimate.
julia> horsepowerwatt(British) # lb⋅ft⋅s⁻¹
τ⋅2⁴3³5⁻¹ = 542.8672105403163 [lb⋅ft⋅s⁻¹] British
julia> horsepowerwatt(Metric) # W
g₀⋅ft⋅lb⋅τ⋅2⁴3³5⁻¹ = 736.0291076111621 [W] Metric
julia> horsepowerwatt(Engineering) # kgf⋅m⋅s⁻¹
ft⋅lb⋅τ⋅2⁴3³5⁻¹ = 75.05408142547782 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepowermetric
— Constanthorsepowermetric(U::UnitSystem) = power(𝟑*𝟓^2,U,Gravitational)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅τ⁻¹2⁻²3⋅5² = 1.15717034952(71) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified
Unit of power
derived from raising 75 kp by 1 m in 1 in 1 s.
julia> horsepowermetric(British) # lb⋅ft⋅s⁻¹
ft⁻¹lb⁻¹3⋅5² = 542.476038840742 [lb⋅ft⋅s⁻¹] British
julia> horsepowermetric(Metric) # W
g₀⋅3⋅5² = 735.49875 [W] Metric
julia> horsepowermetric(Engineering) # kgf⋅m⋅s⁻¹
3⋅5² = 75.0 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepower
— Constanthorsepower(U::UnitSystem) = power(𝟐*𝟓^2*𝟏𝟏,U,British)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅ft⋅lb⋅τ⁻¹2⁻¹5²11 = 1.17321991511(72) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified
Unit of power
derived from raising 550 lb by 1 ft in 1 in 1 s.
julia> horsepower(British) # lb⋅ft⋅s⁻¹
2⋅5²11 = 550.0 [lb⋅ft⋅s⁻¹] British
julia> horsepower(Metric) # W
g₀⋅ft⋅lb⋅2⋅5²11 = 745.6998715822701 [W] Metric
julia> horsepower(Engineering) # kgf⋅m⋅s⁻¹
ft⋅lb⋅2⋅5²11 = 76.0402249068 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.electricalhorsepower
— Constantelectricalhorsepower(U::UnitSystem) = power(746,U,Metric)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴τ⁻¹2⁻¹⋅373 = 1.17369211130(72) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified
Unit of power
for electrical motors in the United States.
julia> electricalhorsepower(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹lb⁻¹2⋅373 = 550.2213633608399 [lb⋅ft⋅s⁻¹] British
julia> electricalhorsepower(Metric) # W
2⋅373 = 746.0 [W] Metric
julia> electricalhorsepower(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹2⋅373 = 76.07082948815345 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.tonsrefrigeration
— Constanttonsrefrigeration(U::UnitSystem) = frequency(𝟐*𝟓/𝟑,U,Metric)*thermalunit(U)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴lb⋅Ωᵢₜ⁻¹Vᵢₜ²τ⁻¹2⁴3⁻¹5⁶43⁻¹ = 5.5330303556(34) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified
Unit of power
derived from melting of 1 short ton of ice in 24 hours.
julia> tonsrefrigeration(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 2593.8587099969172 [lb⋅ft⋅s⁻¹] British
julia> tonsrefrigeration(Metric) # W
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 3516.8001944495536 [W] Metric
julia> tonsrefrigeration(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 358.613817608414 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.boilerhorsepower
— Constantboilerhorsepower(U::UnitSystem) = frequency(1339/𝟐^4/𝟑^2,U,Metric)*thermalunit(U)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴lb⋅Ωᵢₜ⁻¹Vᵢₜ²τ⁻¹2⁻¹3⁻²5⁵43⁻¹⋅1339 = 0.000154348492627(95)) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified
Unit of power
derived from evaporating 34.5 lb of boiling water in 1 hour.
julia> boilerhorsepower(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 7235.785026428902 [lb⋅ft⋅s⁻¹] British
julia> boilerhorsepower(Metric) # W
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 9810.407209099902 [W] Metric
julia> boilerhorsepower(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 1000.3831287034718 [kgf⋅m⋅s⁻¹] Engineering
Electromagnetic Units
Charge Units
MeasureSystems.coulomb
— Constantcoulomb(U::UnitSystem) = charge(𝟏,U,Metric)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²τ⋅2⁻³5⁻⁷ᐟ² = 1.890067014853257×10¹⁸) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Metric unit of charge
(C).
julia> coulomb(Metric) # C
𝟏 = 1.0 [C] Metric
julia> coulomb(EMU) # abC
2⁻¹5⁻¹ = 0.1 [g¹ᐟ²cm¹ᐟ²] EMU
julia> coulomb(ESU) # statC
𝘤⋅2⋅5 = 2.99792458×10⁹ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.earthcoulomb
— Constantearthcoulomb(U::UnitSystem) = charge(𝟏,U,Meridian)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²g₀⁻¹GME⋅τ³2⁻²¹5⁻³⁵ᐟ² = 1.8955448174(38) × 10¹⁸) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Meridian unit of charge
(C).
julia> earthcoulomb(Metric) # C
g₀⁻¹GME⋅τ²2⁻¹⁸5⁻¹⁴ = 1.0028982055(20) [C] Metric
julia> earthcoulomb(EMU) # abC
g₀⁻¹GME⋅τ²2⁻¹⁹5⁻¹⁵ = 0.10028982055(20) [g¹ᐟ²cm¹ᐟ²] EMU
julia> earthcoulomb(ESU) # statC
𝘤⋅g₀⁻¹GME⋅τ²2⁻¹⁷5⁻¹³ = 3.0066131814(60) × 10⁹ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.abcoulomb
— Constantabcoulomb(U::UnitSystem) = charge(𝟏,U,EMU)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²τ⋅2⁻²5⁻⁵ᐟ² = 1.8900670148532572×10¹⁹) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Electromagnetic unit of charge
(C).
julia> abcoulomb(Metric) # C
2⋅5 = 10.0 [C] Metric
julia> abcoulomb(EMU) # abC
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²] EMU
julia> abcoulomb(ESU) # statC
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.statcoulomb
— Constantstatcoulomb(U::UnitSystem) = charge(𝟏,U,ESU)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²τ⋅2⁻⁴5⁻⁹ᐟ² = 6.304584936733987×10⁸) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Electrostatic unit of charge
(C).
julia> statcoulomb(Metric) # C
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [C] Metric
julia> statcoulomb(EMU) # abC
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²] EMU
julia> statcoulomb(ESU) # statC
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
Current Units
MeasureSystems.ampere
— Constantampere(U::UnitSystem) = current(𝟏,U,Metric)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²2⁻⁴5⁻⁷ᐟ² = 0.00243457390395(75)) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified
Metric unit of current
(C⋅s⁻¹).
julia> ampere(Metric) # C⋅s⁻¹
𝟏 = 1.0 [s⁻¹C] Metric
julia> ampere(EMU) # abC⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [Mx⋅cm⁻¹] EMU
julia> ampere(ESU) # statC⋅s⁻¹
𝘤⋅2⋅5 = 2.99792458×10⁹ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
MeasureSystems.abampere
— Constantabampere(U::UnitSystem) = current(𝟏,U,EMU)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²2⁻³5⁻⁵ᐟ² = 0.0243457390395(75)) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified
Electromagnetic unit of current
(C⋅s⁻¹).
julia> abampere(Metric) # C⋅s⁻¹
2⋅5 = 10.0 [s⁻¹C] Metric
julia> abampere(EMU) # abC⋅s⁻¹
𝟏 = 1.0 [Mx⋅cm⁻¹] EMU
julia> abampere(ESU) # statC⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
MeasureSystems.statampere
— Constantstatampere(U::UnitSystem) = current(𝟏,U,ESU)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²2⁻⁵5⁻⁹ᐟ² = 8.1208644146(25) × 10⁻¹³) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified
Electrostatic unit of current
(C⋅s⁻¹).
julia> statampere(Metric) # C⋅s⁻¹
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [s⁻¹C] Metric
julia> statampere(EMU) # abC⋅s⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [Mx⋅cm⁻¹] EMU
julia> statampere(ESU) # statC⋅s⁻¹
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻²] ESU
Electromotive Units
MeasureSystems.volt
— Constantvolt(U::UnitSystem) = electricpotential(𝟏,U,Metric)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²τ⁻¹2²5⁷ᐟ² = 6.4623785688(20) × 10⁻⁶) [ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified
Metric unit of electricpotential
(V).
julia> volt(Metric) # V
𝟏 = 1.0 [V] Metric
julia> volt(EMU) # abV
2⁸5⁸ = 1.0×10⁸ [g¹ᐟ²cm³ᐟ²s⁻²] EMU
julia> volt(ESU) # statV
𝘤⁻¹2⁶5⁶ = 0.0033356409519815205 [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
MeasureSystems.abvolt
— Constantabvolt(U::UnitSystem) = electricpotential(𝟏,U,EMU)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²τ⁻¹2⁻⁶5⁻⁹ᐟ² = 6.4623785688(20) × 10⁻¹⁴) [ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified
Electromagnetic unit of electricpotential
(V).
julia> abvolt(Metric) # V
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [V] Metric
julia> abvolt(EMU) # abV
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻²] EMU
julia> abvolt(ESU) # statV
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
MeasureSystems.statvolt
— Constantstatvolt(U::UnitSystem) = electricpotential(𝟏,U,ESU)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²τ⁻¹2⁻⁴5⁻⁵ᐟ² = 0.00193737235568(59)) [ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified
Electrostatic unit of electricpotential
(V).
julia> statvolt(Metric) # V
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [V] Metric
julia> statvolt(EMU) # abV
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻²] EMU
julia> statvolt(ESU) # statV
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
Inductance Units
MeasureSystems.henry
— Constanthenry(U::UnitSystem) = inductance(𝟏,U,Metric)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(R∞⋅α⁻²2⁷5⁷ = 2.06074224158(63) × 10¹⁸) [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified
Metric unit of inductance
(H).
julia> henry(Metric) # H
𝟏 = 1.0 [H] Metric
julia> henry(EMU) # abH
2⁹5⁹ = 1.0×10⁹ [cm] EMU
julia> henry(ESU) # statH
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [cm⁻¹s²] ESU
MeasureSystems.abhenry
— Constantabhenry(U::UnitSystem) = inductance(𝟏,U,EMU)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(R∞⋅α⁻²2⁻²5⁻² = 2.06074224158(63) × 10⁹) [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified
Electromagnetic unit of inductance
(H).
julia> abhenry(Metric) # H
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [H] Metric
julia> abhenry(EMU) # abH
𝟏 = 1.0 [cm] EMU
julia> abhenry(ESU) # statH
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s²] ESU
MeasureSystems.stathenry
— Constantstathenry(U::UnitSystem) = inductance(𝟏,U,ESU)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(𝘤²R∞⋅α⁻²2²5² = 1.85210276166(57) × 10³⁰) [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified
Electrostatic unit of inductance
(H).
julia> stathenry(Metric) # H
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [H] Metric
julia> stathenry(EMU) # abH
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm] EMU
julia> stathenry(ESU) # statH
𝟏 = 1.0 [cm⁻¹s²] ESU
Resistance Units
MeasureSystems.ohm
— Constantohm(U::UnitSystem) = resistance(𝟏,U,Metric)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⁻¹τ⁻¹2⁶5⁷ = 0.0026544187294380724) [𝘤⋅μ₀⋅λ⋅αL²] Unified
Metric unit of resistance
(Ω).
julia> ohm(Metric) # Ω
𝟏 = 1.0 [Ω] Metric
julia> ohm(EMU) # abΩ
2⁹5⁹ = 1.0×10⁹ [cm⋅s⁻¹] EMU
julia> ohm(ESU) # statΩ
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [cm⁻¹s] ESU
MeasureSystems.abohm
— Constantabohm(U::UnitSystem) = resistance(𝟏,U,EMU)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⁻¹τ⁻¹2⁻³5⁻² = 2.654418729438073×10⁻¹²) [𝘤⋅μ₀⋅λ⋅αL²] Unified
Electromagnetic unit of resistance
(Ω).
julia> abohm(Metric) # Ω
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [Ω] Metric
julia> abohm(EMU) # abΩ
𝟏 = 1.0 [cm⋅s⁻¹] EMU
julia> abohm(ESU) # statΩ
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s] ESU
MeasureSystems.statohm
— Constantstatohm(U::UnitSystem) = resistance(𝟏,U,ESU)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⋅τ⁻¹2⋅5² = 2.385672579618471×10⁹) [𝘤⋅μ₀⋅λ⋅αL²] Unified
Electrostatic unit of resistance
(Ω).
julia> statohm(Metric) # Ω
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [Ω] Metric
julia> statohm(EMU) # abΩ
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm⋅s⁻¹] EMU
julia> statohm(ESU) # statΩ
𝟏 = 1.0 [cm⁻¹s] ESU
Conductance Units
MeasureSystems.siemens
— Constantsiemens(U::UnitSystem) = conductance(𝟏,U,Metric)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⋅τ⋅2⁻⁶5⁻⁷ = 376.73031346177066) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified
Metric unit of conductance
(S).
julia> siemens(Metric) # S
𝟏 = 1.0 [S] Metric
julia> siemens(EMU) # abS
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [cm⁻¹s] EMU
julia> siemens(ESU) # statS
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [cm⋅s⁻¹] ESU
MeasureSystems.abmho
— Constantabmho(U::UnitSystem) = conductance(𝟏,U,EMU)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⋅τ⋅2³5² = 3.767303134617706×10¹¹) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified
Electromagnetic unit of conductance
(S).
julia> abmho(Metric) # S
2⁹5⁹ = 1.0×10⁹ [S] Metric
julia> abmho(EMU) # abS
𝟏 = 1.0 [cm⁻¹s] EMU
julia> abmho(ESU) # statS
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm⋅s⁻¹] ESU
MeasureSystems.statmho
— Constantstatmho(U::UnitSystem) = conductance(𝟏,U,ESU)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⁻¹τ⋅2⁻¹5⁻² = 4.1916900439033643×10⁻¹⁰) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified
Electrostatic unit of conductance
(S).
julia> statmho(Metric) # S
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [S] Metric
julia> statmho(EMU) # abS
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s] EMU
julia> statmho(ESU) # statS
𝟏 = 1.0 [cm⋅s⁻¹] ESU
Capacitance Units
MeasureSystems.farad
— Constantfarad(U::UnitSystem) = capacitance(𝟏,U,Metric)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(𝘤²R∞⋅α⁻²τ²2⁻⁵5⁻⁷ = 2.92472345084(90) × 10²³) [ħ⋅𝘤⁻³μ₀⁻¹mₑ⁻¹ϕ⋅λ⁻¹αL⁻²g₀] Unified
Metric unit of capacitance
(F).
julia> farad(Metric) # F
𝟏 = 1.0 [F] Metric
julia> farad(EMU) # abF
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [cm⁻¹s²] EMU
julia> farad(ESU) # statF
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [cm] ESU
MeasureSystems.abfarad
— Constantabfarad(U::UnitSystem) = capacitance(𝟏,U,EMU)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(𝘤²R∞⋅α⁻²τ²2⁴5² = 2.92472345084(90) × 10³²) [ħ⋅𝘤⁻³μ₀⁻¹mₑ⁻¹ϕ⋅λ⁻¹αL⁻²g₀] Unified
Electromagnetic unit of capacitance
(F).
julia> abfarad(Metric) # F
2⁹5⁹ = 1.0×10⁹ [F] Metric
julia> abfarad(EMU) # abF
𝟏 = 1.0 [cm⁻¹s²] EMU
julia> abfarad(ESU) # statF
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm] ESU
MeasureSystems.statfarad
— Constantstatfarad(U::UnitSystem) = capacitance(𝟏,U,ESU)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(R∞⋅α⁻²τ²5⁻² = 3.25419371152(10) × 10¹¹) [ħ⋅𝘤⁻³μ₀⁻¹mₑ⁻¹ϕ⋅λ⁻¹αL⁻²g₀] Unified
Electrostatic unit of capacitance
(F).
julia> statfarad(Metric) # F
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [F] Metric
julia> statfarad(EMU) # abF
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s²] EMU
julia> statfarad(ESU) # statF
𝟏 = 1.0 [cm] ESU
Magnetic Flux Units
MeasureSystems.weber
— Constantweber(U::UnitSystem) = magneticflux(𝟏,U,Metric)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²2³5⁷ᐟ² = 5.017029284119592×10¹⁵) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified
Metric unit of magneticflux
(Wb).
julia> weber(Metric) # Wb
𝟏 = 1.0 [Wb] Metric
julia> weber(EMU) # Mx
2⁸5⁸ = 1.0×10⁸ [Mx] EMU
julia> weber(ESU) # statWb
𝘤⁻¹2⁶5⁶ = 0.0033356409519815205 [g¹ᐟ²cm¹ᐟ²] ESU
MeasureSystems.maxwell
— Constantmaxwell(U::UnitSystem) = magneticflux(𝟏,U,EMU)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²2⁻⁵5⁻⁹ᐟ² = 5.017029284119592×10⁷) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified
Electromagnetic unit of magneticflux
(Wb).
julia> maxwell(Metric) # Wb
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [Wb] Metric
julia> maxwell(EMU) # Mx
𝟏 = 1.0 [Mx] EMU
julia> maxwell(ESU) # statWb
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²] ESU
MeasureSystems.statweber
— Constantstatweber(U::UnitSystem) = magneticflux(𝟏,U,ESU)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²2⁻³5⁻⁵ᐟ² = 1.5040675409441933×10¹⁸) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified
Electrostatic unit of magneticflux
(Wb).
julia> statweber(Metric) # Wb
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [Wb] Metric
julia> statweber(EMU) # Mx
𝘤⋅2²5² = 2.99792458×10¹⁰ [Mx] EMU
julia> statweber(ESU) # statWb
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²] ESU
Magnetic Flux Density Units
MeasureSystems.tesla
— Constanttesla(U::UnitSystem) = magneticfluxdensity(𝟏,U,Metric)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⋅5⁷ᐟ² = 7.4813429063(46) × 10⁻¹⁰) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified
Metric unit of magneticfluxdensity
(T).
julia> tesla(Metric) # T
𝟏 = 1.0 [T] Metric
julia> tesla(EMU) # G
2⁴5⁴ = 10000.0 [G] EMU
julia> tesla(ESU) # statT
𝘤⁻¹2²5² = 3.3356409519815204×10⁻⁷ [g¹ᐟ²cm⁻³ᐟ²] ESU
MeasureSystems.gauss
— Constantgauss(U::UnitSystem) = magneticfluxdensity(𝟏,U,EMU)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⁻³5⁻¹ᐟ² = 7.4813429063(46) × 10⁻¹⁴) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified
Electromagnetic unit of magneticfluxdensity
(T).
julia> gauss(Metric) # T
2⁻⁴5⁻⁴ = 0.0001 [T] Metric
julia> gauss(EMU) # G
𝟏 = 1.0 [G] EMU
julia> gauss(ESU) # statT
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm⁻³ᐟ²] ESU
MeasureSystems.stattesla
— Constantstattesla(U::UnitSystem) = magneticfluxdensity(𝟏,U,ESU)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻²α⁴τ⁻²2⁻¹5³ᐟ² = 0.0022428501790(14)) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified
Electrostatic unit of magneticfluxdensity
(T).
julia> stattesla(Metric) # T
𝘤⋅2⁻²5⁻² = 2.9979245800000005×10⁶ [T] Metric
julia> stattesla(EMU) # G
𝘤⋅2²5² = 2.99792458×10¹⁰ [G] EMU
julia> stattesla(ESU) # statT
𝟏 = 1.0 [g¹ᐟ²cm⁻³ᐟ²] ESU
Magnetic Specialized Units
MeasureSystems.oersted
— Constantoersted(U::UnitSystem) = magneticfield(𝟏,U,EMU)
magneticfield : [L⁻¹T⁻¹QRC⁻¹], [L⁻¹T⁻¹Q], [L⁻¹T⁻¹Q], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²T⁻²]
L⁻¹T⁻¹QRC⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⁻³5⁻¹ᐟ² = 7.4813429063(46) × 10⁻¹⁴) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀⁻¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified
Electromagnetic unit of magneticfield
(Oe).
julia> oersted(Metric) # A⋅m⁻¹
τ⁻¹2²5³ = 79.57747154594767 [m⁻¹s⁻¹C] Metric
julia> oersted(EMU) # Oe
𝟏 = 1.0 [G] EMU
julia> oersted(ESU) # statA⋅cm⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm¹ᐟ²s⁻²] ESU
MeasureSystems.gilbert
— Constantgilbert(U::UnitSystem) = abampere(U)/𝟐/turn(U)
nonstandard : [T⁻¹QA⁻¹], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹QA⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²τ⁻¹2⁻⁴5⁻⁵ᐟ² = 0.00193737235568(59)) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻³ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified
Electromagnetic unit of magnetization (Gb).
julia> gilbert(Metric) # A⋅rad⁻¹
τ⁻¹5 = 0.7957747154594768 [s⁻¹C] Metric
julia> gilbert(EMU) # Gb
τ⁻¹2⁻¹ = 0.07957747154594767 [Mx⋅cm⁻¹] EMU
julia> gilbert(ESU) # statA⋅rad⁻¹
𝘤⋅τ⁻¹2⋅5² = 2.385672579618471×10⁹ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
Thermodynamic Units
MeasureSystems.kelvin
— Constantkelvin(U::UnitSystem) = temperature(𝟏,U,Metric)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³5³ = 1.686370052070(49) × 10⁻¹⁰) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
Metric unit of temperature
(K or °R).
julia> kelvin(Metric) # K
𝟏 = 1.0 [K] Metric
julia> kelvin(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [K] SI2019
julia> kelvin(British) # °R
3²5⁻¹ = 1.8 [°R] British
MeasureSystems.rankine
— Constantrankine(U::UnitSystem) = temperature(𝟏,U,English)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³3⁻²5⁴ = 9.36872251150(27) × 10⁻¹¹) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
English unit of temperature
(K or °R).
julia> rankine(Metric) # K
3⁻²5 = 0.5555555555555556 [K] Metric
julia> rankine(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴ = 0.55555555536(17) [K] SI2019
julia> rankine(British) # °R
𝟏 = 1.0 [°R] British
MeasureSystems.celsius
— Constantcelsius(U::UnitSystem) = temperature(T₀,U,Metric)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹T₀⋅2³5³ = 4.60631979723(13) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
Metric unit of temperature
(K or °R).
julia> celsius(Metric) # K
T₀ = 273.15 [K] Metric
julia> celsius(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹T₀⋅2⁴5³ = 273.149999906(84) [K] SI2019
julia> celsius(British) # °R
T₀⋅3²5⁻¹ = 491.66999999999996 [°R] British
MeasureSystems.fahrenheit
— Constantfahrenheit(U::UnitSystem) = temperature(Constant(459.67),U,English)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³3⁻²5⁴⋅459.67 = 4.30652067686(13) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
English unit of temperature
(K or °R).
julia> fahrenheit(Metric) # K
3⁻²5⋅459.67 = 255.37222222222223 [K] Metric
julia> fahrenheit(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴⋅459.67 = 255.372222134(79) [K] SI2019
julia> fahrenheit(British) # °R
459.67 = 459.67 [°R] British
MeasureSystems.sealevel
— Constantsealevel(U::UnitSystem) = temperature(T₀+𝟑*𝟓,U)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³5³⋅288.15 = 4.85927530504(14) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
Standard temperature
reference at sealevel
(K or °R).
julia> sealevel(Metric) # K
288.15 = 288.15 [K] Metric
julia> sealevel(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅288.15 = 288.149999901(89) [K] SI2019
julia> sealevel(English) # °R
3²5⁻¹⋅288.15 = 518.67 [°R] English
MeasureSystems.boiling
— Constantboiling(U::UnitSystem) = temperature(T₀+Constant(99.9839),U)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³5³⋅373.1339 = 6.29241834372(18) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
Standard temperature
reference at boiling
point of water (K or °R).
julia> boiling(Metric) # K
373.1339 = 373.1339 [K] Metric
julia> boiling(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅373.1339 = 373.13389987(11) [K] SI2019
julia> boiling(English) # °R
3²5⁻¹⋅373.1339 = 671.64102 [°R] English
MeasureSystems.mole
— Constantmole(U::UnitSystem) = molaramount(𝟏,U,Metric)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻⁴5⁻³ = 1.09776910575(34) × 10²⁷) [mₑ⋅Mᵤ⁻¹] Unified
Molecular molaramount
unit (mol or lb-mol).
julia> mole(Metric) # mol
𝟏 = 1.0 [mol] Metric
julia> mole(English) # lb-mol
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [lb-mol] English
julia> mole(British) # slug-mol
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [slug-mol] British
MeasureSystems.earthmole
— Constantearthmole(U::UnitSystem) = molaramount(𝟏,U,Meridian)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⁻³ᐟ²GME³ᐟ²τ³2⁻³¹5⁻²⁴ = 1.1025449025(33) × 10²⁷) [mₑ⋅Mᵤ⁻¹] Unified
Molecular molaramount
unit (mol or lb-mol).
julia> earthmole(Metric) # mol
g₀⁻³ᐟ²GME³ᐟ²τ³2⁻²⁷5⁻²¹ = 1.0043504565(30) [mol] Metric
julia> earthmole(English) # lb-mol
g₀⁻³ᐟ²lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.0022142137367(67) [lb-mol] English
julia> earthmole(British) # slug-mol
g₀⁻⁵ᐟ²ft⋅lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 6.881986682(21) × 10⁻⁵ [slug-mol] British
MeasureSystems.poundmole
— Constantpoundmole(U::UnitSystem) = molaramount(𝟏,U,English)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻¹ = 4.9793969039(15) × 10²⁹) [mₑ⋅Mᵤ⁻¹] Unified
Molecular molaramount
unit (mol or lb-mol).
julia> poundmole(Metric) # mol
lb⋅2³5³ = 453.59237 [mol] Metric
julia> poundmole(English) # lb-mol
𝟏 = 1.0 [lb-mol] English
julia> poundmole(British) # slug-mol
g₀⁻¹ft = 0.031080950171567256 [slug-mol] British
MeasureSystems.slugmole
— Constantslugmole(U::UnitSystem) = molaramount(𝟏,U,British)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⁻¹ = 1.60207357768(49) × 10³¹) [mₑ⋅Mᵤ⁻¹] Unified
Molecular molaramount
unit (mol or lb-mol).
julia> slugmole(Metric) # mol
g₀⋅ft⁻¹lb⋅2³5³ = 14593.902937206363 [mol] Metric
julia> slugmole(English) # lb-mol
g₀⋅ft⁻¹ = 32.17404855643044 [lb-mol] English
julia> slugmole(British) # slug-mol
𝟏 = 1.0 [slug-mol] British
MeasureSystems.slinchmole
— Constantslinchmole(U::UnitSystem) = molaramount(𝟏,U,IPS)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⋅3 = 1.92248829321(59) × 10³²) [mₑ⋅Mᵤ⁻¹] Unified
Molecular molaramount
unit (mol or lb-mol).
julia> slinchmole(Metric) # mol
g₀⋅ft⁻¹lb⋅2⁵3⋅5³ = 175126.83524647637 [mol] Metric
julia> slinchmole(English) # lb-mol
g₀⋅ft⁻¹2²3 = 386.0885826771653 [lb-mol] English
julia> slinchmole(British) # slug-mol
2²3 = 12.0 [slug-mol] British
MeasureSystems.katal
— Constantkatal(U::UnitSystem) = catalysis(𝟏,U,Metric)
catalysis : [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N]
T⁻¹N⋅(𝘩⁻¹R∞⁻²α⁴τ⁻¹2⁻⁵5⁻³ = 1.41402394541(87) × 10⁶) [ħ⁻¹𝘤²mₑ²Mᵤ⁻¹ϕ⁻¹g₀⁻¹] Unified
Metric unit of catalysis
(mol⋅s⁻¹ or lb-mol⋅s⁻¹).
julia> katal(Metric) # mol⋅s⁻¹
𝟏 = 1.0 [kat] Metric
julia> katal(English) # lb-mol⋅s⁻¹
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [s⁻¹lb-mol] English
julia> katal(British) # slug-mol⋅s⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [s⁻¹slug-mol] British
MeasureSystems.amagat
— Constantamagat(U::UnitSystem) = loschmidt(U)/avogadro(U)
molarity : [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N]
L⁻³N⋅(kB⁻¹R∞⁻³α⁶μₑᵤ⁻¹T₀⁻¹atm⋅τ⁻³2⁻³ = 2.8202760171(26) × 10⁻⁹) [ħ⁻³𝘤³mₑ⁴Mᵤ⁻¹ϕ⁻³g₀⁻³] Unified
Number of moles of an ideal gas in a unit volume (mol⋅m⁻³ or lb-mol⋅ft⁻³).
julia> amagat(Metric) # mol⋅m⁻³
kB⁻¹𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹T₀⁻¹atm⋅2⁴5³ = 44.615033390(14) [m⁻³mol] Metric
julia> amagat(SI2019) # mol⋅m⁻³
kB⁻¹NA⁻¹T₀⁻¹atm = 44.615033405470314 [m⁻³mol] SI2019
julia> amagat(English) # slug-mol⋅ft⁻³
kB⁻¹𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft³lb⁻¹T₀⁻¹atm⋅2 = 0.00278522554558(86) [ft⁻³lb-mol] English
Photometric Units
MeasureSystems.lumen
— Constantlumen(U::UnitSystem) = luminousflux(𝟏,U,Metric)
luminousflux : [J], [J], [J], [J], [J]
J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 2.3034677403(14) × 10⁻¹¹) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified
Common unit of luminousflux
(lm).
julia> lumen(Metric) # lm
𝟏 = 1.0 [cd] Metric
julia> lumen(CGS) # lm
𝟏 = 1.0 [cd] Gauss
julia> lumen(English) # lm
𝟏 = 1.0 [lm] English
MeasureSystems.candela
— Constantcandela(U::UnitSystem) = luminousintensity(𝟏,U,Metric)
luminousintensity : [JA⁻²], [J], [J], [J], [J]
JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 2.3034677403(14) × 10⁻¹¹) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻³g₀⁻²] Unified
Common unit of luminousintensity
(cd).
julia> candela(Engineering) # lm⋅rad⁻²
𝟏 = 1.0 [lm⋅rad⁻²] Engineering
julia> candela(MetricDegree) # lm⋅deg⁻²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [lm⋅deg⁻²] MetricDegree
julia> candela(MetricGradian) # lm⋅gon⁻²
τ²2⁻⁸5⁻⁴ = 0.00024674011002723397 [lm⋅gon⁻²] MetricGradian
julia> candela(CGS) # cd
𝟏 = 1.0 [cd] Gauss
julia> candela(English) # cd
𝟏 = 1.0 [cd] English
MeasureSystems.lux
— Constantlux(U::UnitSystem) = illuminance(𝟏,U,Metric)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 3.4349076043(42) × 10⁻³⁶) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻³g₀⁻⁴] Unified
Metric unit of illuminance
(lx).
julia> lux(Metric) # lx
𝟏 = 1.0 [lx] Metric
julia> lux(CGS) # ph
2⁻⁴5⁻⁴ = 0.0001 [ph] Gauss
julia> lux(English) # fc
ft² = 0.09290304 [fc] English
MeasureSystems.phot
— Constantphot(U::UnitSystem) = illuminance(𝟏,U,Gauss)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³5⁴ = 3.4349076043(42) × 10⁻³²) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻³g₀⁻⁴] Unified
Historic unit of illuminance
(lx).
julia> phot(Metric) # lx
2⁴5⁴ = 10000.0 [lx] Metric
julia> phot(CGS) # ph
𝟏 = 1.0 [ph] Gauss
julia> phot(English) # fc
ft²2⁴5⁴ = 929.0304000000001 [fc] English
MeasureSystems.footcandle
— Constantfootcandle(U::UnitSystem) = illuminance(𝟏,U,English)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸ft⁻²τ⁻³2⁻⁴ = 3.6973037742(45) × 10⁻³⁵) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻³g₀⁻⁴] Unified
English unit of illuminance
(lx).
julia> footcandle(Metric) # lx
ft⁻² = 10.76391041670972 [lx] Metric
julia> footcandle(CGS) # ph
ft⁻²2⁻⁴5⁻⁴ = 0.0010763910416709721 [ph] Gauss
julia> footcandle(English) # fc
𝟏 = 1.0 [fc] English
MeasureSystems.nit
— Constantnit(U::UnitSystem) = luminance(𝟏,U,Metric)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 3.4349076043(42) × 10⁻³⁶) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified
Metric unit of luminance
(lx⋅rad⁻²).
julia> nit(Engineering) # nt
𝟏 = 1.0 [nt] Engineering
julia> nit(MetricDegree) # lm⋅m⁻²deg⁻²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [m⁻²lm⋅deg⁻²] MetricDegree
julia> nit(MetricGradian) # lm⋅m⁻²gon⁻²
τ²2⁻⁸5⁻⁴ = 0.00024674011002723397 [m⁻²lm⋅gon⁻²] MetricGradian
julia> nit(CGS) # sb
2⁻⁴5⁻⁴ = 0.0001 [ph] Gauss
julia> nit(English) # fc
ft² = 0.09290304 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.apostilb
— Constantapostilb(U::UnitSystem) = luminance(𝟐/turn(U),U,Metric)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⁻³ = 1.0933650486(13) × 10⁻³⁶) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified
Metric unit of luminance
(lx⋅rad⁻²).
julia> apostilb(Engineering) # nt
τ⁻¹2 = 0.3183098861837907 [nt] Engineering
julia> apostilb(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻⁵3⁻⁴5⁻² = 9.696273622190722×10⁻⁵ [m⁻²lm⋅deg⁻²] MetricDegree
julia> apostilb(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻⁷5⁻⁴ = 7.853981633974483×10⁻⁵ [m⁻²lm⋅gon⁻²] MetricGradian
julia> apostilb(CGS) # sb
τ⁻¹2⁻³5⁻⁴ = 3.183098861837907×10⁻⁵ [ph] Gauss
julia> apostilb(English) # fc
ft²τ⁻¹2 = 0.029571956088528157 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.stilb
— Constantstilb(U::UnitSystem) = luminance(𝟏,U,Gauss)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³5⁴ = 3.4349076043(42) × 10⁻³²) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified
Historic unit of luminance
(lx⋅rad⁻²).
julia> stilb(Engineering) # nt
2⁴5⁴ = 10000.0 [nt] Engineering
julia> stilb(MetricDegree) # lm⋅m⁻²deg⁻²
τ²2⁻²3⁻⁴5² = 3.0461741978670855 [m⁻²lm⋅deg⁻²] MetricDegree
julia> stilb(MetricGradian) # lm⋅m⁻²gon⁻²
τ²2⁻⁴ = 2.4674011002723395 [m⁻²lm⋅gon⁻²] MetricGradian
julia> stilb(CGS) # sb
𝟏 = 1.0 [ph] Gauss
julia> stilb(English) # fc
ft²2⁴5⁴ = 929.0304000000001 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.lambert
— Constantlambert(U::UnitSystem) = luminance(𝟐/turn(U),U,Gauss)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⋅5⁴ = 1.0933650486(13) × 10⁻³²) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified
Historic unit of luminance
(nt).
julia> lambert(Engineering) # nt
τ⁻¹2⁵5⁴ = 3183.098861837907 [nt] Engineering
julia> lambert(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻¹3⁻⁴5² = 0.9696273622190719 [m⁻²lm⋅deg⁻²] MetricDegree
julia> lambert(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻³ = 0.7853981633974483 [m⁻²lm⋅gon⁻²] MetricGradian
julia> lambert(CGS) # sb
τ⁻¹2 = 0.3183098861837907 [ph] Gauss
julia> lambert(English) # fc
ft²τ⁻¹2⁵5⁴ = 295.71956088528157 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.footlambert
— Constantfootlambert(U::UnitSystem) = luminance(𝟐/turn(U),U,English)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸ft⁻²τ⁻⁴2⁻³ = 1.1768883436(14) × 10⁻³⁵) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified
English unit of luminance
(nt).
julia> footlambert(Engineering) # nt
ft⁻²τ⁻¹2 = 3.42625909963539 [nt] Engineering
julia> footlambert(MetricDegree) # lm⋅m⁻²deg⁻²
ft⁻²τ⋅2⁻⁵3⁻⁴5⁻² = 0.001043698206451664 [m⁻²lm⋅deg⁻²] MetricDegree
julia> footlambert(MetricGradian) # lm⋅m⁻²gon⁻²
ft⁻²τ⋅2⁻⁷5⁻⁴ = 0.0008453955472258477 [m⁻²lm⋅gon⁻²] MetricGradian
julia> footlambert(CGS) # sb
ft⁻²τ⁻¹2⁻³5⁻⁴ = 0.00034262590996353903 [ph] Gauss
julia> footlambert(English) # fc
τ⁻¹2 = 0.3183098861837907 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.bril
— Constantbril(U::UnitSystem) = centi*nano*lambert(U)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⁻¹⁰5⁻⁷ = 1.0933650486(13) × 10⁻⁴³) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified
Reference unit of luminance
(nt).
julia> bril(Engineering) # nt
τ⁻¹2⁻⁶5⁻⁷ = 3.1830988618379075×10⁻⁸ [nt] Engineering
julia> bril(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻¹²3⁻⁴5⁻⁹ = 9.69627362219072×10⁻¹² [m⁻²lm⋅deg⁻²] MetricDegree
julia> bril(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻¹⁴5⁻¹¹ = 7.853981633974482×10⁻¹² [m⁻²lm⋅gon⁻²] MetricGradian
julia> bril(CGS) # sb
τ⁻¹2⁻¹⁰5⁻¹¹ = 3.1830988618379067×10⁻¹² [ph] Gauss
julia> bril(English) # fc
ft²τ⁻¹2⁻⁶5⁻⁷ = 2.957195608852816×10⁻⁹ [ft⁻²lm⋅rad⁻²] English
MeasureSystems.talbot
— Constanttalbot(U::UnitSystem) = luminousenergy(𝟏,U,Metric)
luminousenergy : [TJ], [TJ], [TJ], [TJ], [TJ]
TJ⋅(𝘩⁻¹𝘤⁻¹Kcd⁻¹R∞⁻¹α²2⁻¹ = 1.78828352208(55) × 10¹⁰) [𝘤²mₑ⋅Kcd⋅g₀⁻¹] Unified
Common unit of luminousenergy
(lm⋅s).
julia> talbot(Metric) # lm⋅s
𝟏 = 1.0 [s⋅lm] Metric
MeasureSystems.lumerg
— Constantlumerg(U::UnitSystem) = luminousenergy(𝟏𝟎^-7,U,Metric)
luminousenergy : [TJ], [TJ], [TJ], [TJ], [TJ]
TJ⋅(𝘩⁻¹𝘤⁻¹Kcd⁻¹R∞⁻¹α²2⁻⁸5⁻⁷ = 1788.28352208(55)) [𝘤²mₑ⋅Kcd⋅g₀⁻¹] Unified
Reference unit of luminousenergy
(lm⋅s).
julia> lumerg(CGS) # lm⋅s
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [s⋅lm] Gauss
Specialized Units
MeasureSystems.neper
— Functionneper(U::UnitSystem) = U(𝟏,log(𝟙))
Logarithmic unit expressing the ratio of a dimensional quanty.
julia> neper(Metric)
𝟏 = 1.0 [log(𝟙)] Metric
julia> exp(neper(Metric))
exp(𝟙) = 2.718281828459045 [𝟙] Metric
MeasureSystems.bel
— Functionbel(U::UnitSystem) = U(𝟏,log10(𝟙))
Logarithmic unit expressing the ratio of a dimensional quanty.
julia> bel(Metric)
𝟏 = 1.0 [log10(𝟙)] Metric
julia> exp10(bel(Metric))
exp10(𝟙) = 10.0 [𝟙] Metric
MeasureSystems.decibel
— Functiondecibel(U::UnitSystem) = U(𝟏,logdb(𝟙))
Logarithmic unit expressing the ratio of a dimensional quanty.
julia> decibel(Metric)
𝟏 = 1.0 [dB(𝟙)] Metric
julia> expdb(decibel(Metric))
1.2589254117941673^(𝟙) = 1.2589254117941673 [𝟙] Metric
MeasureSystems.hertz
— Constanthertz(U::UnitSystem) = 𝟏/second(U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻¹ = 1.28808866819(39) × 10⁻²¹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Metric unit of frequency
(s⁻¹).
julia> hertz(Engineering) # rad⋅s⁻¹
𝟏 = 1.0 [Hz] Engineering
julia> hertz(IAU) # D⁻¹
2⁷3³5² = 86400.0 [D⁻¹] IAU☉
MeasureSystems.apm
— Constantapm(U::UnitSystem) = 𝟏/minute(U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻³3⁻¹5⁻¹ = 2.14681444698(66) × 10⁻²³) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Actions per minute apm
unit of frequency
(s⁻¹).
julia> apm(Metric) # s⁻¹
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [Hz] Metric
julia> apm(MPH) # h⁻¹
2²3⋅5 = 60.0 [h⁻¹] MPH
julia> apm(IAU) # D⁻¹
2⁵3²5 = 1440.0 [D⁻¹] IAU☉
MeasureSystems.rpm
— Constantrpm(U::UnitSystem) = turn(U)/minute(U)
angularfrequency : [T⁻¹A], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹A⋅(𝘤⁻¹R∞⁻¹α²2⁻³3⁻¹5⁻¹ = 1.34888329905(41) × 10⁻²²) [ħ⁻¹𝘤²mₑ⋅g₀⁻¹] Unified
Revolutions per minute rpm
unit of angularfrequency
(rad⋅s⁻¹).
julia> rpm(Engineering) # rad⋅s⁻¹
τ⋅2⁻²3⁻¹5⁻¹ = 0.10471975511965977 [s⁻¹rad] Engineering
julia> rpm(MetricGradian) # gon⋅s⁻¹
2²3⁻¹5 = 6.666666666666666 [s⁻¹gon] MetricGradian
julia> rpm(MetricDegree) # deg⋅s⁻¹
2⋅3 = 6.0 [s⁻¹deg] MetricDegree
julia> rpm(MetricArcminute) # amin⋅s⁻¹
2³3²5 = 360.0 [s⁻¹amin] MetricArcminute
julia> rpm(MetricArcsecond) # asec⋅s⁻¹
2⁵3³5² = 21600.0 [s⁻¹asec] MetricArcsecond
julia> rpm(MPH) # rad⋅h⁻¹
τ⋅2²3⋅5 = 376.99111843077515 [h⁻¹] MPH
julia> rpm(IAU) # rad⋅D⁻¹
τ⋅2⁵3²5 = 9047.786842338604 [D⁻¹] IAU☉
MeasureSystems.kayser
— Constantkayser(U::UnitSystem) = wavenumber(𝟏,U,Gauss)
wavenumber : [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹⋅(R∞⁻¹α²τ⁻¹2⋅5² = 3.8615926796(12) × 10⁻¹¹) [ħ⁻¹𝘤⋅mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Metric unit of wavenumber
or curvature (m⁻¹ or ft⁻¹).
julia> kayser(Metric) # m⁻¹
2²5² = 100.0 [m⁻¹] Metric
julia> kayser(CGS) # cm⁻¹
𝟏 = 1.0 [cm⁻¹] Gauss
julia> kayser(English) # ft⁻¹
ft⋅2²5² = 30.48 [ft⁻¹] English
MeasureSystems.diopter
— Constantdiopter(U::UnitSystem) = angularwavenumber(𝟏,U,Metric)
angularwavenumber : [L⁻¹A], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹A⋅(R∞⁻¹α²τ⁻¹2⁻¹ = 3.8615926796(12) × 10⁻¹³) [ħ⁻¹𝘤⋅mₑ⋅g₀⁻¹] Unified
Metric unit of angularwavenumber
or curvature (m⁻¹ or ft⁻¹).
julia> diopter(Metric) # m⁻¹
𝟏 = 1.0 [m⁻¹] Metric
julia> diopter(CGS) # cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [cm⁻¹] Gauss
julia> diopter(English) # ft⁻¹
ft = 0.3048 [ft⁻¹rad] English
MeasureSystems.rayleigh
— Constantrayleigh(U::UnitSystem) = photonirradiance(𝟏𝟎^10,U,Metric)
photonirradiance : [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T]
L⁻²T⋅(𝘤⋅R∞⁻¹α²τ⁻¹2⁹5¹⁰ = 1.15767636121(35) × 10⁶) [ħ⁻¹mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Common unit of photonirradiance
(Hz⋅m⁻²).
julia> rayleigh(Metric) # Hz⋅m⁻²
2¹⁰5¹⁰ = 1.0×10¹⁰ [Hz⋅m⁻²] Metric
julia> rayleigh(CGS) # Hz⋅cm⁻²
2⁶5⁶ = 1.0×10⁶ [Hz⋅m⁻²] Gauss
julia> rayleigh(English) # Hz⋅ft⁻²
ft²2¹⁰5¹⁰ = 9.290304000000001×10⁸ [ft⁻²s] English
MeasureSystems.flick
— Constantflick(U::UnitSystem) = radiance(𝟏𝟎^10,U,Metric)/length(𝟏,U,Metric)
nonstandard : [FL⁻²T⁻¹A⁻²], [FL⁻²T⁻¹], [ML⁻¹T⁻³], [ML⁻¹T⁻³], [ML⁻¹T⁻³]
FL⁻²T⁻¹A⁻²⋅(𝘩⁻¹𝘤⁻²R∞⁻⁵α¹⁰τ⁻⁴2⁵5¹⁰ = 9.059719376(14) × 10⁻³⁶) [ħ⁻⁴𝘤⁷mₑ⁵ϕ⁻⁶g₀⁻⁵] Unified
Lockheed Martin unit of radiance
per length
(W⋅m⁻³⋅rad⁻²).
julia> flick(Metric) # W⋅m⁻³
2¹⁰5¹⁰ = 1.0×10¹⁰ [W⋅m⁻³] Metric
julia> flick(CGS) # erg⋅s⁻¹⋅mL⁻¹
2¹¹5¹¹ = 1.0×10¹¹ [erg⋅s⁻¹mL⁻¹] Gauss
julia> flick(MetricSpatian) # W⋅m⁻³⋅ς⁻²
τ⋅2¹¹5¹⁰ = 1.2566370614359172×10¹¹ [W⋅m⁻³⋅ς⁻²] MetricSpatian
MeasureSystems.gforce
— Constantgforce(U::UnitSystem) = specificforce(𝟏,U,English)
specificforce : [FM⁻¹], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
FM⁻¹⋅(𝘤⁻²R∞⁻¹α²g₀⋅τ⁻¹2⁻¹ = 4.2135265250(13) × 10⁻²⁹) [ħ⁻¹𝘤³mₑ⋅ϕ⁻¹g₀⁻²] Unified
Standard gravity specificforce
g₀
at geodetic reference latitude (m⋅s⁻² or ft⋅s⁻²).
julia> gforce(CGS) # gal
g₀⋅2²5² = 980.665 [gal] Gauss
julia> gforce(British) # ft⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [ft⋅s⁻²] British
julia> gforce(English) # lbf⋅lbm⁻¹
𝟏 = 1.0 [g₀] English
MeasureSystems.galileo
— Constantgalileo(U::UnitSystem) = specificforce(𝟏,U,Gauss)
specificforce : [FM⁻¹], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
FM⁻¹⋅(𝘤⁻²R∞⁻¹α²τ⁻¹2⁻³5⁻² = 4.2966013114(13) × 10⁻³²) [ħ⁻¹𝘤³mₑ⋅ϕ⁻¹g₀⁻²] Unified
Metric unit of specificforce
used in gravimetry (m⋅s⁻² or ft⋅s⁻²).
julia> galileo(Metric) # m⋅s⁻²
2⁻²5⁻² = 0.010000000000000002 [m⋅s⁻²] Metric
julia> galileo(CGS) # gal
𝟏 = 1.0 [gal] Gauss
julia> galileo(English) # lbf⋅lbm⁻¹
g₀⁻¹2⁻²5⁻² = 0.0010197162129779284 [g₀] English
MeasureSystems.eotvos
— Constanteotvos(U::UnitSystem) = specificforce(nano,U,Gauss)/length(𝟏,U,Gauss)
nonstandard : [FM⁻¹L⁻¹], [T⁻²], [T⁻²], [T⁻²], [T⁻²]
FM⁻¹L⁻¹⋅(𝘤⁻²R∞⁻²α⁴τ⁻²2⁻¹¹5⁻⁹ = 1.6591724171(10) × 10⁻⁵¹) [ħ⁻²𝘤⁴mₑ²ϕ⁻²g₀⁻³] Unified
Metric unit of specificforce
per length
used in gravimetry (s⁻² or gal⋅cm⁻¹).
julia> eotvos(Metric) # s⁻²
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [Hz⋅s⁻¹] Metric
julia> eotvos(CGS) # gal⋅cm⁻¹
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [gal⋅cm⁻¹] Gauss
julia> eotvos(English) # lbf⋅lbm⁻¹ft⁻¹
g₀⁻¹ft⋅2⁻⁹5⁻⁹ = 3.108095017156726×10⁻¹¹ [lbf⋅lbm⁻¹ft⁻¹] English
MeasureSystems.darcy
— Constantdarcy(U::UnitSystem) = area(milli/atm,U,Gauss)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴atm⁻¹τ²2⁻⁵5⁻⁷ = 6.6183611583(41) × 10¹²) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified
Metric unit of permeability (m² or ft²).
julia> darcy(Metric) # m²
atm⁻¹2⁻⁷5⁻⁷ = 9.86923266716013×10⁻¹³ [m²] Metric
julia> darcy(CGS) # cm²
atm⁻¹2⁻³5⁻³ = 9.86923266716013×10⁻⁹ [cm²] Gauss
julia> darcy(English) # ft²
ft⁻²atm⁻¹2⁻⁷5⁻⁷ = 1.0623153631097677×10⁻¹¹ [ft²] English
MeasureSystems.poise
— Constantpoise(U::UnitSystem) = viscosity(𝟏,U,Gauss)
viscosity : [FL⁻²T], [FL⁻²T], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹]
FL⁻²T⋅(𝘩⁻¹R∞⁻³α⁶τ⁻²2⁻⁴5⁻¹ = 5.4603845163(50) × 10⁻⁵) [ħ⁻²𝘤³mₑ³ϕ⁻²g₀⁻³] Unified
Metric unit of viscosity
(kg⋅m⁻¹⋅s⁻¹ or lb⋅s⋅ft⁻²).
julia> poise(Metric) # kg⋅m⁻¹⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [Pa⋅s] Metric
julia> poise(CGS) # g⋅cm⁻¹⋅s⁻¹
𝟏 = 1.0 [P] Gauss
julia> poise(English) # lb⋅s⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lbf⋅ft⁻²s] English
MeasureSystems.reyn
— Constantreyn(U::UnitSystem) = viscosity(𝟏,U,IPS)
viscosity : [FL⁻²T], [FL⁻²T], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹]
FL⁻²T⋅(𝘩⁻¹R∞⁻³α⁶g₀⋅ft⁻²lb⋅τ⁻²2⋅3² = 3.7648025968(35)) [ħ⁻²𝘤³mₑ³ϕ⁻²g₀⁻³] Unified
IPS unit of viscosity
named after Reynolds (kg⋅m⁻¹⋅s⁻¹ or lb⋅s⋅ft⁻²).
julia> reyn(Metric) # kg⋅m⁻¹⋅s⁻¹
g₀⋅ft⁻²lb⋅2⁴3² = 6894.75729316836 [Pa⋅s] Metric
julia> reyn(CGS) # g⋅cm⁻¹⋅s⁻¹
g₀⋅ft⁻²lb⋅2⁵3²5 = 68947.5729316836 [P] Gauss
julia> reyn(English) # lb⋅s⋅ft⁻²
2⁴3² = 144.0 [lbf⋅ft⁻²s] English
MeasureSystems.stokes
— Constantstokes(U::UnitSystem) = diffusivity(𝟏,U,Gauss)
diffusivity : [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹]
L²T⁻¹⋅(𝘤⁻¹R∞⋅α⁻²τ⋅2⁻³5⁻⁴ = 0.86379927371(26)) [ħ⋅mₑ⁻¹ϕ⋅g₀] Unified
Metric unit of diffusivity
(m²⋅s⁻¹ or ft²⋅s⁻¹).
julia> stokes(Metric) # m²⋅s⁻¹
2⁻⁴5⁻⁴ = 0.0001 [m²s⁻¹] Metric
julia> stokes(CGS) # cm²⋅s⁻¹
𝟏 = 1.0 [St] Gauss
julia> stokes(English) # ft²⋅s⁻¹
ft⁻²2⁻⁴5⁻⁴ = 0.0010763910416709721 [ft²s⁻¹] English
MeasureSystems.rayl
— Constantrayl(U::UnitSystem) = specificimpedance(𝟏,U,Metric)
specificimpedance : [FL⁻³T], [FL⁻³T], [ML⁻²T⁻¹], [ML⁻²T⁻¹], [ML⁻²T⁻¹]
FL⁻³T⋅(𝘩⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 2.1085780876(26) × 10⁻¹⁶) [ħ⁻³𝘤⁴mₑ⁴ϕ⁻³g₀⁻⁴] Unified
Metric unit of specificimpedance
(kg⋅m⁻²⋅s⁻¹ or lb⋅s⋅ft⁻³).
julia> rayl(Metric) # kg⋅m⁻²⋅s⁻¹
𝟏 = 1.0 [kg⋅m⁻²s⁻¹] Metric
julia> rayl(CGS) # g⋅cm⁻²⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [g⋅cm⁻²s⁻¹] Gauss
julia> rayl(English) # lb⋅s⋅ft⁻³
g₀⁻¹ft³lb⁻¹ = 0.00636588035426416 [lbf⋅ft⁻³s] English
MeasureSystems.mpge
— Constantmpge(U::UnitSystem) = mile(U)/gasgallon(U)
nonstandard : [F⁻¹], [F⁻¹], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²]
F⁻¹⋅(𝘩⋅𝘤⋅R∞²α⁻⁴ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²τ⋅2⁻²5⁻⁷11⋅19⁻¹43 = 2.8368673134(17) × 10⁻⁶) [ħ⋅𝘤⁻³mₑ⁻²ϕ⋅g₀²] Unified
Equivalent mile
per gasgallon
reference unit of length
per energy
(N⁻¹ or lb⁻¹).
julia> mpge(Metric) # N⁻¹
ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁴5⁻⁷11⋅19⁻¹43 = 1.3380584481180184×10⁻⁵ [N⁻¹] Metric
julia> mpge(CGS) # dyn⁻¹
ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁹5⁻¹²11⋅19⁻¹43 = 1.3380584481180186×10⁻¹⁰ [dyn⁻¹] Gauss
julia> mpge(English) # lb⁻¹
g₀⋅ft⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁴5⁻⁷11⋅19⁻¹43 = 5.95198051140049×10⁻⁵ [lbf⁻¹] English
MeasureSystems.langley
— Constantlangley(U::UnitSystem) = calorie(U)/(centi*meter(U))^2
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶Ωᵢₜ⁻¹Vᵢₜ²τ⁻²2³3²5⁵43⁻¹ = 7.6256740434(70) × 10⁻⁸) [ħ⁻²𝘤⁴mₑ³ϕ⁻²g₀⁻³] Unified
Solar radiation unit (kg⋅s⁻² or lb⋅ft⁻¹).
julia> langley(Metric) # kg⋅s⁻²
Ωᵢₜ⁻¹Vᵢₜ²2⁶3²5⁵43⁻¹ = 41867.37323211056 [N⋅m⁻¹] Metric
julia> langley(CGS) # g⋅s⁻²
Ωᵢₜ⁻¹Vᵢₜ²2⁹3²5⁸43⁻¹ = 4.186737323211056×10⁷ [dyn⋅cm⁻¹] Gauss
julia> langley(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁶3²5⁵43⁻¹ = 2868.8263456495906 [lbf⋅ft⁻¹] English
MeasureSystems.jansky
— Constantjansky(U::UnitSystem) = fluence(𝟏𝟎^-26,U,Metric)
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶τ⁻²2⁻²⁹5⁻²⁶ = 1.8213882206(17) × 10⁻³⁸) [ħ⁻²𝘤⁴mₑ³ϕ⁻²g₀⁻³] Unified
Reference unit of spectral irradiance (kg⋅s⁻² or lb⋅ft⁻¹).
julia> jansky(Metric) # kg⋅s⁻²
2⁻²⁶5⁻²⁶ = 1.0×10⁻²⁶ [N⋅m⁻¹] Metric
julia> jansky(CGS) # g⋅s⁻²
2⁻²³5⁻²³ = 1.0×10⁻²³ [dyn⋅cm⁻¹] Gauss
julia> jansky(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻²⁶5⁻²⁶ = 6.852176585679177×10⁻²⁸ [lbf⋅ft⁻¹] English
MeasureSystems.solarflux
— Constantsolarflux(U::UnitSystem) = hecto^2*jansky(U)
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶τ⁻²2⁻²⁵5⁻²² = 1.8213882206(17) × 10⁻³⁴) [ħ⁻²𝘤⁴mₑ³ϕ⁻²g₀⁻³] Unified
Reference unit of spectral irradiance (kg⋅s⁻² or lb⋅ft⁻¹).
julia> solarflux(Metric) # kg⋅s⁻²
2⁻²²5⁻²² = 9.999999999999999×10⁻²³ [N⋅m⁻¹] Metric
julia> solarflux(CGS) # g⋅s⁻²
2⁻¹⁹5⁻¹⁹ = 1.0×10⁻¹⁹ [dyn⋅cm⁻¹] Gauss
julia> solarflux(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻²²5⁻²² = 6.852176585679175×10⁻²⁴ [lbf⋅ft⁻¹] English
MeasureSystems.curie
— Constantcurie(U::UnitSystem) = frequency(𝟏,U,Metric)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁸5⁹⋅37 = 4.7659280723(15) × 10⁻¹¹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified
Reference unit of radioactivity (Bq or s⁻¹).
julia> curie(Metric) # Bq
2⁹5⁹⋅37 = 3.7×10¹⁰ [Hz] Metric
julia> curie(IAU) # D⁻¹
2¹⁶3³5¹¹⋅37 = 3.1968×10¹⁵ [D⁻¹] IAU☉
MeasureSystems.gray
— Constantgray(U::UnitSystem) = energy(𝟏,U,Metric)/mass(𝟏,U,Metric)
specificenergy : [FM⁻¹L], [L²T⁻²], [L²T⁻²], [L²T⁻²], [L²T⁻²]
FM⁻¹L⋅(𝘤⁻² = 1.1126500560536183×10⁻¹⁷) [𝘤²g₀⁻¹] Unified
Metric unit of radioactivity (Gy or m²⋅s⁻²).
julia> gray(Metric) # Gy
𝟏 = 1.0 [J⋅kg⁻¹] Metric
MeasureSystems.roentgen
— Constantroentgen(U::UnitSystem) = chargedensity(𝟏,U,ESU)/density(Constant(1.293),U,Metric)
exposure : [M⁻¹Q], [F⁻¹LT⁻²Q], [M⁻¹Q], [M⁻¹ᐟ²L¹ᐟ²], [M⁻¹ᐟ²L³ᐟ²T⁻¹]
M⁻¹Q⋅(𝘩¹ᐟ²𝘤⁻³ᐟ²R∞⋅α⁻²τ⋅2³5³ᐟ²/1.293 = 4.4416769735(14) × 10⁻¹⁶) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified
Legacy unit of ionisation exposure
(C⋅kg⁻¹ or C⋅lb⁻¹).
julia> roentgen(Metric) # C⋅kg⁻¹
𝘤⁻¹2⁵5⁵/1.293 = 0.0002579768717696458 [kg⁻¹C] Metric
julia> roentgen(English) # C⋅lb⁻¹
𝘤⁻¹lb⋅2⁵5⁵/1.293 = 0.00011701634067117975 [lbm⁻¹C] English
Units Index
MeasureSystems.abampere
MeasureSystems.abcoulomb
MeasureSystems.abfarad
MeasureSystems.abhenry
MeasureSystems.abmho
MeasureSystems.abohm
MeasureSystems.abvolt
MeasureSystems.acre
MeasureSystems.admiraltymile
MeasureSystems.amagat
MeasureSystems.ampere
MeasureSystems.angstrom
MeasureSystems.apm
MeasureSystems.apostilb
MeasureSystems.arcminute
MeasureSystems.arcsecond
MeasureSystems.astronomicalunit
MeasureSystems.atmosphere
MeasureSystems.bar
MeasureSystems.barn
MeasureSystems.barye
MeasureSystems.boilerhorsepower
MeasureSystems.boiling
MeasureSystems.bradian
MeasureSystems.bril
MeasureSystems.bubnoff
MeasureSystems.byte
MeasureSystems.calorie
MeasureSystems.candela
MeasureSystems.celsius
MeasureSystems.centi
MeasureSystems.coulomb
MeasureSystems.cup
MeasureSystems.curie
MeasureSystems.darcy
MeasureSystems.day
MeasureSystems.degree
MeasureSystems.diopter
MeasureSystems.dyne
MeasureSystems.earthcalorie
MeasureSystems.earthcoulomb
MeasureSystems.earthgram
MeasureSystems.earthmeter
MeasureSystems.earthmole
MeasureSystems.electricalhorsepower
MeasureSystems.electronvolt
MeasureSystems.eotvos
MeasureSystems.erg
MeasureSystems.fahrenheit
MeasureSystems.farad
MeasureSystems.flick
MeasureSystems.fluidounce
MeasureSystems.foot
MeasureSystems.footcandle
MeasureSystems.footlambert
MeasureSystems.footpound
MeasureSystems.fpm
MeasureSystems.fps
MeasureSystems.galileo
MeasureSystems.gallon
MeasureSystems.gasgallon
MeasureSystems.gauss
MeasureSystems.gforce
MeasureSystems.gilbert
MeasureSystems.gradian
MeasureSystems.grain
MeasureSystems.gram
MeasureSystems.gray
MeasureSystems.hectare
MeasureSystems.henry
MeasureSystems.hertz
MeasureSystems.horsepower
MeasureSystems.horsepowermetric
MeasureSystems.horsepowerwatt
MeasureSystems.hour
MeasureSystems.hyl
MeasureSystems.inch
MeasureSystems.inchmercury
MeasureSystems.ips
MeasureSystems.jansky
MeasureSystems.joule
MeasureSystems.jupiterdistance
MeasureSystems.katal
MeasureSystems.kayser
MeasureSystems.kelvin
MeasureSystems.kilo
MeasureSystems.kilocalorie
MeasureSystems.kilogram
MeasureSystems.kilopond
MeasureSystems.kmh
MeasureSystems.knot
MeasureSystems.lambert
MeasureSystems.langley
MeasureSystems.lightyear
MeasureSystems.liter
MeasureSystems.lumen
MeasureSystems.lumerg
MeasureSystems.lunardistance
MeasureSystems.lux
MeasureSystems.maxwell
MeasureSystems.meancalorie
MeasureSystems.meridianmile
MeasureSystems.meter
MeasureSystems.mile
MeasureSystems.minute
MeasureSystems.mole
MeasureSystems.mpge
MeasureSystems.mph
MeasureSystems.mps
MeasureSystems.ms
MeasureSystems.nauticalmile
MeasureSystems.newton
MeasureSystems.nit
MeasureSystems.oersted
MeasureSystems.ohm
MeasureSystems.ounce
MeasureSystems.parsec
MeasureSystems.pascal
MeasureSystems.phot
MeasureSystems.pint
MeasureSystems.poise
MeasureSystems.pound
MeasureSystems.poundal
MeasureSystems.poundforce
MeasureSystems.poundmole
MeasureSystems.psi
MeasureSystems.quart
MeasureSystems.radian
MeasureSystems.rankine
MeasureSystems.rayl
MeasureSystems.rayleigh
MeasureSystems.reyn
MeasureSystems.roentgen
MeasureSystems.rpm
MeasureSystems.sealevel
MeasureSystems.second
MeasureSystems.siemens
MeasureSystems.slinch
MeasureSystems.slinchmole
MeasureSystems.slug
MeasureSystems.slugmole
MeasureSystems.solarflux
MeasureSystems.spat
MeasureSystems.spatian
MeasureSystems.squaredegree
MeasureSystems.statampere
MeasureSystems.statcoulomb
MeasureSystems.statfarad
MeasureSystems.stathenry
MeasureSystems.statmho
MeasureSystems.statohm
MeasureSystems.stattesla
MeasureSystems.statutemile
MeasureSystems.statvolt
MeasureSystems.statweber
MeasureSystems.steradian
MeasureSystems.stilb
MeasureSystems.stokes
MeasureSystems.surveyacre
MeasureSystems.surveyfoot
MeasureSystems.tablespoon
MeasureSystems.talbot
MeasureSystems.teaspoon
MeasureSystems.technicalatmosphere
MeasureSystems.tesla
MeasureSystems.thermalunit
MeasureSystems.ton
MeasureSystems.tonne
MeasureSystems.tonsrefrigeration
MeasureSystems.tontnt
MeasureSystems.torr
MeasureSystems.turn
MeasureSystems.volt
MeasureSystems.watt
MeasureSystems.weber
MeasureSystems.yard
MeasureSystems.year
MeasureSystems.bel
MeasureSystems.decibel
MeasureSystems.neper
MeasureSystems.British
MeasureSystems.CODATA
MeasureSystems.Conventional
MeasureSystems.Cosmological
MeasureSystems.CosmologicalQuantum
MeasureSystems.EMU
MeasureSystems.ESU
MeasureSystems.Electronic
MeasureSystems.Engineering
MeasureSystems.English
MeasureSystems.FFF
MeasureSystems.FPS
MeasureSystems.Gauss
MeasureSystems.Gravitational
MeasureSystems.Hartree
MeasureSystems.Hubble
MeasureSystems.IAU
MeasureSystems.IAUE
MeasureSystems.IAUJ
MeasureSystems.IPS
MeasureSystems.International
MeasureSystems.InternationalMean
MeasureSystems.KKH
MeasureSystems.LorentzHeaviside
MeasureSystems.MPH
MeasureSystems.MTS
MeasureSystems.Meridian
MeasureSystems.Metric
MeasureSystems.Natural
MeasureSystems.NaturalGauss
MeasureSystems.Nautical
MeasureSystems.Planck
MeasureSystems.PlanckGauss
MeasureSystems.QCD
MeasureSystems.QCDGauss
MeasureSystems.QCDoriginal
MeasureSystems.Rydberg
MeasureSystems.SI1976
MeasureSystems.SI2019
MeasureSystems.Schrodinger
MeasureSystems.Stoney
MeasureSystems.Survey