Standard Units

DOI

Similar to how SI defines standardized units of kilogram, meter, second, kelvin, coulomb, candela, and mole; the following is a comprehensive selection of generated standardized physics units defined by UnitSystem defaults useful for scientists and engineers.

Prefix Units

MeasureSystems.centiConstant
julia> deci # 𝟏𝟎^-1
2⁻¹5⁻¹ = 0.1

julia> centi # 𝟏𝟎^-2
2⁻²5⁻² = 0.010000000000000002

julia> milli # 𝟏𝟎^-3
2⁻³5⁻³ = 0.001

julia> micro # 𝟏𝟎^-6
2⁻⁶5⁻⁶ = 1.0×10⁻⁶

julia> nano # 𝟏𝟎^-9
2⁻⁹5⁻⁹ = 1.0×10⁻⁹

julia> pico # 𝟏𝟎^-12
2⁻¹²5⁻¹² = 1.0000000000000002×10⁻¹²

julia> femto # 𝟏𝟎^-15
2⁻¹⁵5⁻¹⁵ = 1.0×10⁻¹⁵

julia> atto # 𝟏𝟎^-18
2⁻¹⁸5⁻¹⁸ = 9.999999999999999×10⁻¹⁹

julia> zepto # 𝟏𝟎^-21
2⁻²¹5⁻²¹ = 1.0000000000000001×10⁻²¹

julia> yocto # 𝟏𝟎^-24
2⁻²⁴5⁻²⁴ = 1.0×10⁻²⁴
MeasureSystems.kiloConstant
julia> deka # 𝟏𝟎
2⋅5 = 10.0

julia> hecto # 𝟏𝟎^2
2²5² = 100.0

julia> kilo # 𝟏𝟎^3
2³5³ = 1000.0

julia> mega # 𝟏𝟎^6
2⁶5⁶ = 1.0×10⁶

julia> giga # 𝟏𝟎^9
2⁹5⁹ = 1.0×10⁹

julia> tera # 𝟏𝟎^12
2¹²5¹² = 1.0×10¹²

julia> peta # 𝟏𝟎^15
2¹⁵5¹⁵ = 1.0×10¹⁵

julia> exa # 𝟏𝟎^18
2¹⁸5¹⁸ = 1.0×10¹⁸

julia> zetta # 𝟏𝟎^21
2²¹5²¹ = 1.0×10²¹

julia> yotta # 𝟏𝟎^24
2²⁴5²⁴ = 1.0×10²⁴
MeasureSystems.byteConstant
julia> byte # 𝟐^3
2³ = 8.0

julia> kibi # 𝟐^10
2¹⁰ = 1024.0

julia> mebi # 𝟐^20
2²⁰ = 1.048576×10⁶

julia> gibi # 𝟐^30
2³⁰ = 1.073741824×10⁹

julia> tebi # 𝟐^40
2⁴⁰ = 1.099511627776×10¹²

julia> pebi # 𝟐^50
2⁵⁰ = 1.125899906842624×10¹⁵

julia> exbi # 𝟐^60
2⁶⁰ = 1.152921504606847×10¹⁸

julia> zebi # 𝟐^70
2⁷⁰ = 1.1805916207174113×10²¹

julia> yobi # 𝟐^80
2⁸⁰ = 1.2089258196146292×10²⁴

Mechanics Units

Angle Units

MeasureSystems.turnConstant
turn(U::UnitSystem) = 2π/angle(U)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ = 6.283185307179586) [ϕ] Unified

Complete rotation angle of revolution from a full circle.

julia> turn(Engineering) # rad
τ = 6.283185307179586 [rad] Engineering

julia> turn(MetricDegree) # deg
2³3²5 = 360.0 [deg] MetricDegree

julia> turn(MetricArcminute) # amin
2⁵3³5² = 21600.0 [amin] MetricArcminute

julia> turn(MetricArcsecond) # asec
2⁷3⁴5³ = 1.296×10⁶ [asec] MetricArcsecond

julia> turn(MetricGradian) # gon
2⁴5² = 400.0 [gon] MetricGradian
MeasureSystems.radianConstant
radian(U::UnitSystem) = angle(𝟏,U,Metric)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A [ϕ] Unified

Unit of angle which is dimensionless (rad).

julia> radian(Engineering) # rad
𝟏 = 1.0 [rad] Engineering

julia> radian(MetricDegree) # deg
τ⁻¹2³3²5 = 57.29577951308232 [deg] MetricDegree

julia> radian(MetricArcminute) # amin
τ⁻¹2⁵3³5² = 3437.7467707849396 [amin] MetricArcminute

julia> radian(MetricArcsecond) # asec
τ⁻¹2⁷3⁴5³ = 206264.80624709636 [asec] MetricArcsecond

julia> radian(MetricGradian) # gon
τ⁻¹2⁴5² = 63.66197723675814 [gon] MetricGradian
MeasureSystems.spatianConstant
spatian(U::UnitSystem) = angle(𝟏,U,MetricSpatian)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ¹ᐟ²2¹ᐟ² = 3.5449077018110318) [ϕ] Unified

Unit of angle which is dimensionless (rad).

julia> spatian(Engineering) # rad
τ¹ᐟ²2¹ᐟ² = 3.5449077018110318 [rad] Engineering

julia> spatian(MetricDegree) # deg
τ⁻¹ᐟ²2⁷ᐟ²3²5 = 203.1082500771923 [deg] MetricDegree

julia> spatian(MetricArcminute) # amin
τ⁻¹ᐟ²2¹¹ᐟ²3³5² = 12186.495004631537 [amin] MetricArcminute

julia> spatian(MetricArcsecond) # asec
τ⁻¹ᐟ²2¹⁵ᐟ²3⁴5³ = 731189.7002778922 [asec] MetricArcsecond

julia> spatian(MetricGradian) # gon
τ⁻¹ᐟ²2⁹ᐟ²5² = 225.67583341910253 [gon] MetricGradian
MeasureSystems.gradianConstant
gradian(U::UnitSystem) = angle(𝟏,U,MetricGradian)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁴5⁻² = 0.015707963267948967) [ϕ] Unified

Unit of angle which divides a turn into 400 parts (rad).

julia> gradian(Engineering) # rad
τ⋅2⁻⁴5⁻² = 0.015707963267948967 [rad] Engineering

julia> gradian(MetricDegree) # deg
2⁻¹3²5⁻¹ = 0.9 [deg] MetricDegree

julia> gradian(MetricArcminute) # amin
2⋅3³ = 54.0 [amin] MetricArcminute

julia> gradian(MetricArcsecond) # asec
2³3⁴5 = 3240.0 [asec] MetricArcsecond

julia> gradian(MetricGradian) # gon
𝟏 = 1.0 [gon] MetricGradian
MeasureSystems.bradianConstant
bradian(U::UnitSystem) = angle(τ/𝟐^8,U,Metric)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁸ = 0.02454369260617026) [ϕ] Unified

Unit of angle which divides a turn into 𝟐^8 or 256 parts (rad).

julia> bradian(Engineering) # rad
τ⋅2⁻⁸ = 0.02454369260617026 [rad] Engineering

julia> bradian(MetricDegree) # deg
2⁻⁵3²5 = 1.40625 [deg] MetricDegree

julia> bradian(MetricArcminute) # amin
2⁻³3³5² = 84.375 [amin] MetricArcminute

julia> bradian(MetricArcsecond) # asec
2⁻¹3⁴5³ = 5062.5 [asec] MetricArcsecond

julia> bradian(MetricGradian) # gon
2⁻⁴5² = 1.5625 [gon] MetricGradian
MeasureSystems.degreeConstant
degree(U::UnitSystem) = angle(𝟏,U,MetricDegree)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻³3⁻²5⁻¹ = 0.017453292519943295) [ϕ] Unified

Unit of angle which divides a turn into 360 parts (rad).

julia> degree(Engineering) # rad
τ⋅2⁻³3⁻²5⁻¹ = 0.017453292519943295 [rad] Engineering

julia> degree(MetricDegree) # deg
𝟏 = 1.0 [deg] MetricDegree

julia> degree(MetricArcminute) # amin
2²3⋅5 = 60.0 [amin] MetricArcminute

julia> degree(MetricArcsecond) # asec
2⁴3²5² = 3600.0 [asec] MetricArcsecond

julia> degree(MetricGradian) # gon
2⋅3⁻²5 = 1.1111111111111112 [gon] MetricGradian
MeasureSystems.arcminuteConstant
arcminute(U::UnitSystem) = angle(𝟏,U,MetricArcminute)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁵3⁻³5⁻² = 0.0002908882086657217) [ϕ] Unified

Unit of angle which divides a degree into 60 parts (rad).

julia> arcminute(Engineering) # rad
τ⋅2⁻⁵3⁻³5⁻² = 0.0002908882086657217 [rad] Engineering

julia> arcminute(MetricDegree) # deg
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [deg] MetricDegree

julia> arcminute(MetricArcminute) # amin
𝟏 = 1.0 [amin] MetricArcminute

julia> arcminute(MetricArcsecond) # asec
2²3⋅5 = 60.0 [asec] MetricArcsecond

julia> arcminute(MetricGradian) # gon
2⁻¹3⁻³ = 0.01851851851851852 [gon] MetricGradian
MeasureSystems.arcsecondConstant
arcsecond(U::UnitSystem) = angle(𝟏,U,MetricArcsecond)
angle : [A], [𝟙], [𝟙], [𝟙], [𝟙]
A⋅(τ⋅2⁻⁷3⁻⁴5⁻³ = 4.84813681109536×10⁻⁶) [ϕ] Unified

Unit of angle which divides a arcminute into 60 parts (rad).

julia> arcsecond(Engineering) # rad
τ⋅2⁻⁷3⁻⁴5⁻³ = 4.84813681109536×10⁻⁶ [rad] Engineering

julia> arcsecond(MetricDegree) # deg
2⁻⁴3⁻²5⁻² = 0.00027777777777777783 [deg] MetricDegree

julia> arcsecond(MetricArcminute) # amin
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [amin] MetricArcminute

julia> arcsecond(MetricArcsecond) # asec
𝟏 = 1.0 [asec] MetricArcsecond

julia> arcsecond(MetricGradian) # gon
2⁻³3⁻⁴5⁻¹ = 0.00030864197530864197 [gon] MetricGradian

Solid Angle Units

MeasureSystems.spatConstant
spat(U::UnitSystem) = 4π/solidangle(U)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A²⋅(τ⋅2 = 12.566370614359172) [ϕ²] Unified

Complete spherical solidangle around point from a full sphere.

julia> spat(Engineering) # rad²
τ⋅2 = 12.566370614359172 [rad²] Engineering

julia> spat(MetricDegree) # deg²
τ⁻¹2⁷3⁴5² = 41252.96124941928 [deg²] MetricDegree

julia> spat(MetricArcminute) # amin²
τ⁻¹2¹¹3⁶5⁴ = 1.485106604979094×10⁸ [amin²] MetricArcminute

julia> spat(MetricArcsecond) # asec²
τ⁻¹2¹⁵3⁸5⁶ = 5.346383777924738×10¹¹ [asec²] MetricArcsecond

julia> spat(MetricGradian) # gon²
τ⁻¹2⁹5⁴ = 50929.58178940651 [gon²] MetricGradian
MeasureSystems.steradianConstant
steradian(U::UnitSystem) = solidangle(𝟏,U,Metric)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A² [ϕ²] Unified

Unit of solidangle which is dimensionless (rad²).

julia> steradian(Engineering) # rad²
𝟏 = 1.0 [rad²] Engineering

julia> steradian(MetricDegree) # deg²
τ⁻²2⁶3⁴5² = 3282.8063500117446 [deg²] MetricDegree

julia> steradian(MetricArcminute) # amin²
τ⁻²2¹⁰3⁶5⁴ = 1.181810286004228×10⁷ [amin²] MetricArcminute

julia> steradian(MetricArcsecond) # asec²
τ⁻²2¹⁴3⁸5⁶ = 4.254517029615221×10¹⁰ [asec²] MetricArcsecond

julia> steradian(MetricGradian) # gon²
τ⁻²2⁸5⁴ = 4052.8473456935117 [gon²] MetricGradian
MeasureSystems.squaredegreeConstant
squaredegree(U::UnitSystem) = solidangle(𝟏,U,MetricDegree)
solidangle : [A²], [𝟙], [𝟙], [𝟙], [𝟙]
A²⋅(τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087) [ϕ²] Unified

Unit of solidangle which is a degree squared (rad²).

julia> squaredegree(Engineering) # rad²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [rad²] Engineering

julia> squaredegree(MetricDegree) # deg²
𝟏 = 1.0 [deg²] MetricDegree

julia> squaredegree(MetricArcminute) # amin²
2⁴3²5² = 3600.0 [amin²] MetricArcminute

julia> squaredegree(MetricArcsecond) # asec²
2⁸3⁴5⁴ = 1.296×10⁷ [asec²] MetricArcsecond

julia> squaredegree(MetricGradian) # gon²
2²3⁻⁴5² = 1.2345679012345678 [gon²] MetricGradian

Time Units

MeasureSystems.secondConstant
second(U::UnitSystem) = time(𝟏,U,Metric)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2 = 7.7634407063(24) × 10²⁰) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified

Unit of time defined by hyperfine transition frequency of Cs-133 atom (s).

julia> second(Metric) # s
𝟏 = 1.0 [s] Metric

julia> second(MPH) # h
2⁻⁴3⁻²5⁻² = 0.00027777777777777783 [h] MPH

julia> second(IAU) # D
2⁻⁷3⁻³5⁻² = 1.1574074074074079×10⁻⁵ [D] IAU☉
MeasureSystems.minuteConstant
minute(U::UnitSystem) = 𝟐^2*𝟑*𝟓*second(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2³3⋅5 = 4.6580644238(14) × 10²²) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified

Unit of time defined by 60 second intervals (s).

julia> minute(Metric) # s
2²3⋅5 = 60.0 [s] Metric

julia> minute(MPH) # h
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [h] MPH

julia> minute(IAU) # D
2⁻⁵3⁻²5⁻¹ = 0.0006944444444444445 [D] IAU☉
MeasureSystems.hourConstant
hour(U::UnitSystem) = 𝟐^2*𝟑*𝟓*minute(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁵3²5² = 2.79483865428(86) × 10²⁴) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified

Unit of time defined by 60 minute intervals (s).

julia> hour(Metric) # s
2⁴3²5² = 3600.0 [s] Metric

julia> hour(MPH) # h
𝟏 = 1.0 [h] MPH

julia> hour(IAU) # D
2⁻³3⁻¹ = 0.041666666666666664 [D] IAU☉
MeasureSystems.dayConstant
day(U::UnitSystem) = 𝟐^3*𝟑*hour(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²τ⋅2⁸3³5² = 6.7076127703(21) × 10²⁵) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified

Unit of time defined by 24 hour intervals (s).

julia> day(Metric) # s
2⁷3³5² = 86400.0 [s] Metric

julia> day(MPH) # h
2³3 = 24.0 [h] MPH

julia> day(IAU) # D
𝟏 = 1.0 [D] IAU☉
MeasureSystems.yearConstant
year(U::UnitSystem) = aⱼ*day(U)
time : [T], [T], [T], [T], [T]
T⋅(𝘤⋅R∞⋅α⁻²aⱼ⋅τ⋅2⁸3³5² = 2.44995556434(75) × 10²⁸) [ħ⋅𝘤⁻²mₑ⁻¹ϕ⋅g₀] Unified

Unit of time defined by Julian calendar year interval (s).

julia> year(Metric) # s
aⱼ⋅2⁷3³5² = 3.15576×10⁷ [s] Metric

julia> year(MPH) # h
aⱼ⋅2³3 = 8766.0 [h] MPH

julia> year(IAU) # D
aⱼ = 365.25 [D] IAU☉

Length Units

MeasureSystems.angstromConstant
angstrom(U::UnitSystem) = hecto*pico*meter(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁻⁹5⁻¹⁰ = 258.960507484(79)) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Metric unit of length (m or ft).

julia> angstrom(CGS) # cm
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [cm] Gauss

julia> angstrom(English) # ft
ft⁻¹2⁻¹⁰5⁻¹⁰ = 3.280839895013123×10⁻¹⁰ [ft] English

julia> angstrom(IPS) # in
ft⁻¹2⁻⁸3⋅5⁻¹⁰ = 3.937007874015747×10⁻⁹ [in] IPS
MeasureSystems.inchConstant
inch(U::UnitSystem) = length(𝟏,U,IPS)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁻¹3⁻¹ = 6.5775968901(20) × 10¹⁰) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

English unit of length (m or ft).

julia> inch(Metric) # m
ft⋅2⁻²3⁻¹ = 0.0254 [m] Metric

julia> inch(English) # ft
2⁻²3⁻¹ = 0.08333333333333333 [ft] English

julia> inch(IPS) # in
𝟏 = 1.0 [in] IPS
MeasureSystems.footConstant
foot(U::UnitSystem) = length(𝟏,U,English)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2 = 7.8931162681(24) × 10¹¹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

English unit of length (m or ft).

julia> foot(Metric) # m
ft = 0.3048 [m] Metric

julia> foot(Survey) # ftUS
ft⋅ftUS⁻¹ = 0.9999980000000002 [ft] Survey

julia> foot(IPS) # in
2²3 = 12.0 [in] IPS
MeasureSystems.surveyfootConstant
surveyfoot(U::UnitSystem) = length(𝟏,U,Survey)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ftUS⋅τ⋅2 = 7.8931320544(24) × 10¹¹) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Survey unit of length (m or ft).

julia> surveyfoot(Metric) # m
ftUS = 0.3048006096012192 [m] Metric

julia> surveyfoot(English) # ft
ft⁻¹ftUS = 1.0000020000039997 [ft] English

julia> surveyfoot(IPS) # in
ft⁻¹ftUS⋅2²3 = 12.000024000047997 [in] IPS
MeasureSystems.yardConstant
yard(U::UnitSystem) = 𝟑*foot(U)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⋅3 = 2.36793488043(73) × 10¹²) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

English unit of length (m or ft).

julia> yard(Metric) # m
ft⋅3 = 0.9144000000000001 [m] Metric

julia> yard(English) # ft
3 = 3.0 [ft] English

julia> yard(IPS) # in
2²3² = 36.0 [in] IPS
MeasureSystems.meterConstant
meter(U::UnitSystem) = length(𝟏,U,Metric)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2 = 2.58960507484(79) × 10¹²) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Metric unit of length (m or ft).

julia> meter(CGS) # cm
2²5² = 100.0 [cm] Gauss

julia> meter(English) # ft
ft⁻¹ = 3.280839895013123 [ft] English

julia> meter(Meridian) # em
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 0.9985540395(10) [em] Meridian
MeasureSystems.earthmeterConstant
earthmeter(U::UnitSystem) = greatcircle(U)/𝟐^9/𝟓^7
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻⁸5⁻⁷ = 2.5933549636(27) × 10¹²) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Meridian unit of length as originally defined in France (m or ft).

julia> earthmeter(CGS) # cm
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁷5⁻⁵ = 100.144805430(10) [cm] Gauss

julia> earthmeter(English) # ft
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻⁹5⁻⁷ = 3.2855907293(33) [ft] English

julia> earthmeter(Meridian) # em
𝟏 = 1.0 [em] Meridian
MeasureSystems.mileConstant
mile(U::UnitSystem) = length(𝟏,U,MPH)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁶3⋅5⋅11 = 4.1675653896(13) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Statute English mile (m or ft).

julia> mile(Metric) # m
ft⋅2⁵3⋅5⋅11 = 1609.344 [m] Metric

julia> mile(English) # ft
2⁵3⋅5⋅11 = 5280.0 [ft] English

julia> mile(Nautical) # nm
ft⋅ftUS⁻¹2⁵3⋅5⋅11 = 5279.989440000001 [ft] Survey
MeasureSystems.statutemileConstant
statutemile(U::UnitSystem) = length(𝟐^5*𝟑*𝟓*𝟏𝟏,U,Survey)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ftUS⋅τ⋅2⁶3⋅5⋅11 = 4.1675737247(13) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Statute Survey mile (m or ft).

julia> statutemile(Metric) # m
ftUS⋅2⁵3⋅5⋅11 = 1609.3472186944373 [m] Metric

julia> statutemile(English) # ft
ft⁻¹ftUS⋅2⁵3⋅5⋅11 = 5280.010560021119 [ft] English

julia> statutemile(Survey) # ftUS
2⁵3⋅5⋅11 = 5280.0 [ft] Survey
MeasureSystems.meridianmileConstant
meridianmile(U::UnitSystem) = length(𝟐^4*𝟓^5/𝟑^3,U,Metric)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁵3⁻³5⁵ = 4.7955649534(15) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Historic nautical mile as defined by naive meridian assumption (m or ft).

julia> meridianmile(Metric) # m
2⁴3⁻³5⁵ = 1851.8518518518522 [m] Metric

julia> meridianmile(English) # ft
ft⁻¹2⁴3⁻³5⁵ = 6075.629435209488 [ft] English

julia> meridianmile(Nautical) # nm
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹5⁷ = 0.9985540395(10) [nm] Nautical
MeasureSystems.admiraltymileConstant
admiraltymile(U::UnitSystem) = length(𝟐^6*𝟓*𝟏𝟗,U,English)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²ft⋅τ⋅2⁷5⋅19 = 4.7990146910(15) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Historic nautical mile as defined by the Clarke authalic radius (m or ft).

julia> admiraltymile(Metric) # m
ft⋅2⁶5⋅19 = 1853.1840000000002 [m] Metric

julia> admiraltymile(English) # ft
2⁶5⋅19 = 6080.0 [ft] English

julia> admiraltymile(Nautical) # nm
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹¹3³5³19 = 0.9992723594(10) [nm] Nautical
MeasureSystems.nauticalmileConstant
nauticalmile(U::UnitSystem) = greatcircle(U)/𝟐^5/𝟑^3/𝟓^2
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²g₀⁻¹ᐟ²GME¹ᐟ²τ²2⁻⁴3⁻³5⁻² = 4.8025091919(50) × 10¹⁵) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Standard nauticalmile as defined by earthradius (m or ft).

julia> nauticalmile(Metric) # m
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁵3⁻³5⁻² = 1854.5334339(19) [m] Metric

julia> nauticalmile(Meridian) # em
2⁴3⁻³5⁵ = 1851.8518518518522 [em] Meridian

julia> nauticalmile(English) # ft
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻⁵3⁻³5⁻² = 6084.4272766(61) [ft] English
MeasureSystems.lunardistanceConstant
lunardistance(U::UnitSystem) = length(𝟏,U,IAUE)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁴3³5³⋅14237 = 9.9544160116(31) × 10²⁰) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Standard distance between the Earth and the Moon (m or ft).

julia> lunardistance(Metric) # m
2³3³5³⋅14237 = 3.84399×10⁸ [m] Metric

julia> lunardistance(Nautical) # nm
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁸3⁶5⁵⋅14237 = 207275.31409(21) [nm] Nautical

julia> lunardistance(Metric)/lightspeed(Metric) # s
𝘤⁻¹2³3³5³⋅14237 = 1.2822170463007445 [s] Metric
MeasureSystems.astronomicalunitConstant
astronomicalunit(U::UnitSystem) = length(𝟏,U,IAU)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²au⋅τ⋅2 = 3.8739940515(12) × 10²³) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Standard astronomical unit from the International Astronomical Union (m or ft).

julia> astronomicalunit(Metric) # m
au = 1.495978707000(30) × 10¹¹ [m] Metric

julia> astronomicalunit(English) # ft
au⋅ft⁻¹ = 4.908066624016(98) × 10¹¹ [ft] English

julia> astronomicalunit(Metric)/lightspeed(Metric) # s
𝘤⁻¹au = 499.004783836(10) [s] Metric
MeasureSystems.jupiterdistanceConstant
jupiterdistance(U::UnitSystem) = length(𝟏,U,IAUJ)
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²τ⋅2⁷3⋅5⁶⋅259493 = 2.01595316905(62) × 10²⁴) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Standard distance between the Sun and the planet Jupiter (m or ft).

julia> jupiterdistance(Metric) # m
2⁶3⋅5⁶⋅259493 = 7.78479×10¹¹ [m] Metric

julia> jupiterdistance(IAU) # au
au⁻¹2⁶3⋅5⁶⋅259493 = 5.20381069836(10) [au] IAU☉

julia> jupiterdistance(Metric)/lightspeed(Metric) # s
𝘤⁻¹2⁶3⋅5⁶⋅259493 = 2596.726432657622 [s] Metric
MeasureSystems.lightyearConstant
lightyear(U::UnitSystem) = year(U)*lightspeed(U)
length : [L], [L], [L], [L], [L]
L⋅(𝘤⋅R∞⋅α⁻²aⱼ⋅τ⋅2⁸3³5² = 2.44995556434(75) × 10²⁸) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Unit of length defined by distance traveled by light in 1 year unit.

julia> lightyear(Metric) # m
𝘤⋅aⱼ⋅2⁷3³5² = 9.4607304725808×10¹⁵ [m] Metric

julia> lightyear(English) # ft
𝘤⋅aⱼ⋅ft⁻¹2⁷3³5² = 3.103914197040945×10¹⁶ [ft] English

julia> lightyear(IAU) # au
𝘤⋅aⱼ⋅au⁻¹2⁷3³5² = 63241.0770843(13) [au] IAU☉
MeasureSystems.parsecConstant
parsec(U::UnitSystem) = astronomicalunit(U)*𝟐^2*𝟑^4*𝟓^3/τ
length : [L], [L], [L], [L], [L]
L⋅(R∞⋅α⁻²au⋅2⁸3⁴5³ = 7.9906863243(25) × 10²⁸) [ħ⋅𝘤⁻¹mₑ⁻¹ϕ⋅g₀] Unified

Unit of length defined at which 1 astronomicalunit subtends an angle of 1 arcsecond.

julia> parsec(Metric) # m
au⋅τ⁻¹2⁷3⁴5³ = 3.085677581491(62) × 10¹⁶ [m] Metric

julia> parsec(English) # ft
au⋅ft⁻¹τ⁻¹2⁷3⁴5³ = 1.012361411250(20) × 10¹⁷ [ft] English

julia> parsec(IAU) # au
τ⁻¹2⁷3⁴5³ = 206264.80624709636 [au] IAU☉

Speed Units

MeasureSystems.bubnoffConstant
bubnoff(U::UnitSystem) = meter(U)/year(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹aⱼ⁻¹2⁻⁷3⁻³5⁻² = 1.0570008340246158×10⁻¹⁶) [𝘤] Unified

Reference unit of erosion speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> bubnoff(CGS) # cm⋅s⁻¹
aⱼ⁻¹2⁻⁵3⁻³ = 3.1688087814028955×10⁻⁶ [cm⋅s⁻¹] Gauss

julia> bubnoff(English) # ft⋅s⁻¹
aⱼ⁻¹ft⁻¹2⁻⁷3⁻³5⁻² = 1.0396354269694539×10⁻⁷ [ft⋅s⁻¹] English
MeasureSystems.fpmConstant
fpm(U::UnitSystem) = feet(U)/minute(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁻²3⁻¹5⁻¹ = 1.6945056036066124×10⁻¹¹) [𝘤] Unified

Feet per minute unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> fpm(CGS) # cm⋅s⁻¹
ft⋅3⁻¹5 = 0.508 [cm⋅s⁻¹] Gauss

julia> fpm(IPS) # in⋅s⁻¹
5⁻¹ = 0.2 [in⋅s⁻¹] IPS

julia> fpm(English) # ft⋅s⁻¹
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [ft⋅s⁻¹] English
MeasureSystems.ipsConstant
ips(U::UnitSystem) = inch(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁻²3⁻¹ = 8.472528018033061×10⁻¹¹) [𝘤] Unified

Inch per second unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> ips(CGS) # cm⋅s⁻¹
ft⋅3⁻¹5² = 2.5399999999999996 [cm⋅s⁻¹] Gauss

julia> ips(English) # ft⋅s⁻¹
2⁻²3⁻¹ = 0.08333333333333333 [ft⋅s⁻¹] English
MeasureSystems.kmhConstant
kmh(U::UnitSystem) = kilo(U)*meter(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹2⁻¹3⁻²5 = 9.265669311059779×10⁻¹⁰) [𝘤] Unified

Kilometers per hour unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> kmh(Metric) # m⋅s⁻¹
2⁻¹3⁻²5 = 0.2777777777777778 [m⋅s⁻¹] Metric

julia> kmh(MPH) # mi⋅h⁻¹
ft⁻¹2⁻²3⁻¹5²11⁻¹ = 0.6213711922373338 [mi⋅h⁻¹] MPH

julia> kmh(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁸3³5⁵ = 0.53921918134(54) [nm⋅h⁻¹] Nautical
MeasureSystems.fpsConstant
fps(U::UnitSystem) = feet(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft = 1.0167033621639674×10⁻⁹) [𝘤] Unified

Feet per second unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> fps(Metric) # m⋅s⁻¹
ft = 0.3048 [m⋅s⁻¹] Metric

julia> fps(KKH) # km⋅h⁻¹
ft⋅2⋅3²5⁻¹ = 1.09728 [km⋅h⁻¹] KKH

julia> fps(MPH) # mi⋅h⁻¹
2⁻¹3⋅5⋅11⁻¹ = 0.6818181818181819 [mi⋅h⁻¹] MPH
MeasureSystems.mphConstant
mph(U::UnitSystem) = mile(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⋅3⁻¹5⁻¹11 = 1.4911649311738188×10⁻⁹) [𝘤] Unified

Miles per hour unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> mph(Metric) # m⋅s⁻¹
ft⋅2⋅3⁻¹5⁻¹11 = 0.44704 [m⋅s⁻¹] Metric

julia> mph(KKH) # km⋅h⁻¹
ft⋅2²3⋅5⁻²11 = 1.6093440000000003 [km⋅h⁻¹] KKH

julia> mph(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹⁰3⁴5³11 = 0.86778915418(87) [nm⋅h⁻¹] Nautical
MeasureSystems.knotConstant
knot(U::UnitSystem) = nauticalmile(U)/hour(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁹3⁻⁵5⁻⁴ = 1.7183493525(17) × 10⁻⁹) [𝘤] Unified

Nautical miles per hour unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> knot(Metric) # m⋅s⁻¹
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁹3⁻⁵5⁻⁴ = 0.51514817608(52) [m⋅s⁻¹] Metric

julia> knot(KKH) # km⋅h⁻¹
g₀⁻¹ᐟ²GME¹ᐟ²τ⋅2⁻⁸3⁻³5⁻⁵ = 1.8545334339(19) [km⋅h⁻¹] KKH

julia> knot(MPH) # mi⋅h⁻¹
g₀⁻¹ᐟ²ft⁻¹GME¹ᐟ²τ⋅2⁻¹⁰3⁻⁴5⁻³11⁻¹ = 1.1523536509(12) [mi⋅h⁻¹] MPH
MeasureSystems.msConstant
ms(U::UnitSystem) = meter(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ = 3.3356409519815204×10⁻⁹) [𝘤] Unified

Meters per second unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> ms(KKH) # km⋅h⁻¹
2⋅3²5⁻¹ = 3.6 [km⋅h⁻¹] KKH

julia> ms(MPH) # mi⋅h⁻¹
ft⁻¹2⁻¹3⋅5⋅11⁻¹ = 2.236936292054402 [mi⋅h⁻¹] MPH

julia> ms(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²GME⁻¹ᐟ²τ⁻¹2⁹3⁵5⁴ = 1.9411890528(19) [nm⋅h⁻¹] Nautical
MeasureSystems.mpsConstant
mps(U::UnitSystem) = mile(U)/second(U)
speed : [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹], [LT⁻¹]
LT⁻¹⋅(𝘤⁻¹ft⋅2⁵3⋅5⋅11 = 5.368193752225748×10⁻⁶) [𝘤] Unified

Miles per second unit of speed (m⋅s⁻¹ or ft⋅s⁻¹).

julia> mps(KKH) # km⋅h⁻¹
ft⋅2⁶3³11 = 5793.638400000001 [km⋅h⁻¹] KKH

julia> mps(MPH) # mi⋅h⁻¹
2⁴3²5² = 3600.0 [mi⋅h⁻¹] MPH

julia> mps(Nautical) # nm⋅h⁻¹
g₀¹ᐟ²ft⋅GME⁻¹ᐟ²τ⁻¹2¹⁴3⁶5⁵11 = 3124.0409550(31) [nm⋅h⁻¹] Nautical

Area Units

MeasureSystems.barnConstant
barn(U::UnitSystem) = area((𝟐*𝟓)^-28,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴τ²2⁻²⁶5⁻²⁸ = 0.00067060544436(41)) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified

Unit of area defined by 100 square femto-meters (m² or ft²).

julia> barn(Metric) # m²
2⁻²⁸5⁻²⁸ = 1.0×10⁻²⁸ [m²] Metric

julia> barn(CGS) # cm²
2⁻²⁴5⁻²⁴ = 1.0×10⁻²⁴ [cm²] Gauss

julia> barn(English) # ft²
ft⁻²2⁻²⁸5⁻²⁸ = 1.076391041670972×10⁻²⁷ [ft²] English
MeasureSystems.hectareConstant
hectare(U::UnitSystem) = area(hecto^2,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴τ²2⁶5⁴ = 6.7060544436(41) × 10²⁸) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified

Metric unit of land area defined by 100 square meters (m² or ft²).

julia> hectare(Metric) # m²
2⁴5⁴ = 10000.0 [m²] Metric

julia> hectare(English) # ft²
ft⁻²2⁴5⁴ = 107639.1041670972 [ft²] English

julia> hectare(Survey) # ftUS²
ftUS⁻²2⁴5⁴ = 107638.67361111114 [ft²] Survey
MeasureSystems.acreConstant
acre(U::UnitSystem) = area(𝟐^4*𝟓^4,U,Metric)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴ft²τ²2⁵3²5⋅11² = 2.7138439494(17) × 10²⁸) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified

English unit of land area (m² or ft²).

julia> acre(Metric) # m²
ft²2³3²5⋅11² = 4046.8564224 [m²] Metric

julia> acre(English) # ft²
2³3²5⋅11² = 43560.0 [ft²] English

julia> acre(Survey) # ftUS²
ft²ftUS⁻²2³3²5⋅11² = 43559.82576017426 [ft²] Survey
MeasureSystems.surveyacreConstant
surveyacre(U::UnitSystem) = area(𝟐^3*𝟑^2*𝟓*𝟏𝟏^2,U,Survey)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴ftUS²τ²2⁵3²5⋅11² = 2.7138548048(17) × 10²⁸) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified

Survey unit of land area (m² or ft²).

julia> surveyacre(Metric) # m²
ftUS²2³3²5⋅11² = 4046.8726098742513 [m²] Metric

julia> surveyacre(English) # ft²
ft⁻²ftUS²2³3²5⋅11² = 43560.174240522705 [ft²] English

julia> surveyacre(Survey) # ftUS²
2³3²5⋅11² = 43560.0 [ft²] Survey

Volume Units

MeasureSystems.literConstant
liter(U::UnitSystem) = volume(𝟏𝟎^-3,U,Metric)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³5⁻³ = 1.7366032619(16) × 10³⁴) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

Unit of volume derived from 1 cubic decimeter (m³ or ft³).

julia> liter(Metric) # m³
2⁻³5⁻³ = 0.001 [m³] Metric

julia> liter(CGS) # cm³
2³5³ = 1000.0 [mL] Gauss

julia> liter(IPS) # in³
ft⁻³2³3³5⁻³ = 61.02374409473227 [in³] IPS
MeasureSystems.gallonConstant
gallon(U::UnitSystem) = volume(𝟕*𝟏𝟏/𝟐^2,U,English)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻³3⁻²7⋅11 = 6.5737584518(60) × 10³⁴) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

Unit of volume derived from the US liquid gallon in cubic inches (m³ or ft³).

julia> gallon(Metric) # m³
ft³2⁻⁶3⁻²7⋅11 = 0.0037854117839999997 [m³] Metric

julia> gallon(CGS) # cm³
ft³3⁻²5⁶7⋅11 = 3785.411784000001 [mL] Gauss

julia> gallon(IPS) # in³
3⋅7⋅11 = 231.0 [in³] IPS
MeasureSystems.quartConstant
quart(U::UnitSystem) = gallon(U)/𝟐^2
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁵3⁻²7⋅11 = 1.6434396130(15) × 10³⁴) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

English unit of volume (m³ or ft³).

julia> quart(Metric) # m³
ft³2⁻⁸3⁻²7⋅11 = 0.0009463529459999999 [m³] Metric

julia> quart(CGS) # cm³
ft³2⁻²3⁻²5⁶7⋅11 = 946.3529460000002 [mL] Gauss

julia> quart(IPS) # in³
2⁻²3⋅7⋅11 = 57.75 [in³] IPS
MeasureSystems.pintConstant
pint(U::UnitSystem) = quart(U)/𝟐
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁶3⁻²7⋅11 = 8.2171980648(76) × 10³³) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

English unit of volume (m³ or ft³).

julia> pint(Metric) # m³
ft³2⁻⁹3⁻²7⋅11 = 0.00047317647299999996 [m³] Metric

julia> pint(CGS) # cm³
ft³2⁻³3⁻²5⁶7⋅11 = 473.1764730000001 [mL] Gauss

julia> pint(IPS) # in³
2⁻³3⋅7⋅11 = 28.875 [in³] IPS
MeasureSystems.cupConstant
cup(U::UnitSystem) = pint(U)/𝟐
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻⁷3⁻²7⋅11 = 4.1085990324(38) × 10³³) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

English unit of volume (m³ or ft³).

julia> cup(Metric) # m³
ft³2⁻¹⁰3⁻²7⋅11 = 0.00023658823649999998 [m³] Metric

julia> cup(CGS) # cm³
ft³2⁻⁴3⁻²5⁶7⋅11 = 236.58823650000005 [mL] Gauss

julia> cup(IPS) # in³
2⁻⁴3⋅7⋅11 = 14.4375 [in³] IPS
MeasureSystems.fluidounceConstant
fluidounce(U::UnitSystem) = cup(U)/𝟐^3
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶ft³τ³2⁻¹⁰3⁻²7⋅11 = 5.1357487905(47) × 10³²) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

English unit of volume (m³ or ft³).

julia> fluidounce(Metric) # m³
ft³2⁻¹³3⁻²7⋅11 = 2.9573529562499998×10⁻⁵ [m³] Metric

julia> fluidounce(CGS) # cm³
ft³2⁻⁷3⁻²5⁶7⋅11 = 29.573529562500006 [mL] Gauss

julia> fluidounce(IPS) # in³
2⁻⁷3⋅7⋅11 = 1.8046875 [in³] IPS
MeasureSystems.teaspoonConstant
teaspoon(U::UnitSystem) = 𝟓*milli*liter(U)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³2⁻³5⁻⁵ = 8.6830163097(80) × 10³¹) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

Measuring teaspoon unit of volume (m³ or ft³).

julia> teaspoon(Metric) # m³
2⁻⁶5⁻⁵ = 5.0×10⁻⁶ [m³] Metric

julia> teaspoon(CGS) # cm³
5 = 5.0 [mL] Gauss

julia> teaspoon(IPS) # in³
ft⁻³3³5⁻⁵ = 0.3051187204736614 [in³] IPS
MeasureSystems.tablespoonConstant
tablespoon(U::UnitSystem) = 𝟑*teaspoon(U)
volume : [L³], [L³], [L³], [L³], [L³]
L³⋅(R∞³α⁻⁶τ³2⁻³3⋅5⁻⁵ = 2.6049048929(24) × 10³²) [ħ³𝘤⁻³mₑ⁻³ϕ³g₀³] Unified

Measuring tablespoon unit of volume (m³ or ft³).

julia> tablespoon(Metric) # m³
2⁻⁶3⋅5⁻⁵ = 1.5000000000000002×10⁻⁵ [m³] Metric

julia> tablespoon(CGS) # cm³
3⋅5 = 15.0 [mL] Gauss

julia> tablespoon(IPS) # in³
ft⁻³3⁴5⁻⁵ = 0.9153561614209842 [in³] IPS

Mass Units

MeasureSystems.gramConstant
gram(U::UnitSystem) = mass(𝟏,U,Gauss)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻⁴5⁻³ = 1.09776910575(34) × 10²⁷) [mₑ] Unified

Metric gram unit of mass (kg or lb).

julia> gram(Metric) # kg
2⁻³5⁻³ = 0.001 [kg] Metric

julia> gram(CGS) # g
𝟏 = 1.0 [g] Gauss

julia> gram(English) # lb
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [lbm] English

julia> gram(British) # slug
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [slug] British

julia> gram(Gravitational) # hyl
g₀⁻¹2⁻³5⁻³ = 0.00010197162129779284 [hyl] Gravitational
MeasureSystems.earthgramConstant
earthgram(U::UnitSystem) = mass(milli,U,Meridian)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⁻³ᐟ²GME³ᐟ²τ³2⁻³¹5⁻²⁴ = 1.1025449025(33) × 10²⁷) [mₑ] Unified

Meridian gram unit of mass based on earthmeter (kg or lb).

julia> earthgram(Meridian) # keg
2⁻³5⁻³ = 0.001 [keg] Meridian

julia> earthgram(CGS) # g
g₀⁻³ᐟ²GME³ᐟ²τ³2⁻²⁷5⁻²¹ = 1.0043504565(30) [g] Gauss

julia> earthgram(English) # lb
g₀⁻³ᐟ²lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.0022142137367(67) [lbm] English

julia> earthgram(British) # slug
g₀⁻⁵ᐟ²ft⋅lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 6.881986682(21) × 10⁻⁵ [slug] British

julia> earthgram(Gravitational) # hyl
g₀⁻⁵ᐟ²GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.00010241524440(31) [hyl] Gravitational
MeasureSystems.kilogramConstant
kilogram(U::UnitSystem) = mass(𝟏,U,Metric)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻¹ = 1.09776910575(34) × 10³⁰) [mₑ] Unified

Metric kilogram unit of mass (kg or lb).

julia> kilogram(Metric) # kg
𝟏 = 1.0 [kg] Metric

julia> kilogram(CGS) # g
2³5³ = 1000.0 [g] Gauss

julia> kilogram(English) # lb
lb⁻¹ = 2.2046226218487757 [lbm] English

julia> kilogram(British) # slug
g₀⁻¹ft⋅lb⁻¹ = 0.06852176585679176 [slug] British

julia> kilogram(Gravitational) # hyl
g₀⁻¹ = 0.10197162129779283 [hyl] Gravitational
MeasureSystems.tonneConstant
tonne(U::UnitSystem) = mass(𝟏,U,MTS)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2²5³ = 1.09776910575(34) × 10³³) [mₑ] Unified

Metric tonne unit of mass (kg or lb).

julia> tonne(Metric) # kg
2³5³ = 1000.0 [kg] Metric

julia> tonne(MTS) # t
𝟏 = 1.0 [t] MTS

julia> tonne(English) # lb
lb⁻¹2³5³ = 2204.6226218487755 [lbm] English

julia> tonne(British) # slug
g₀⁻¹ft⋅lb⁻¹2³5³ = 68.52176585679176 [slug] British

julia> tonne(Gravitational) # hyl
g₀⁻¹2³5³ = 101.97162129779284 [hyl] Gravitational
MeasureSystems.tonConstant
ton(U::UnitSystem) = mass(𝟐*kilo,U,English)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2³5³ = 9.9587938078(31) × 10³²) [mₑ] Unified

English ton unit of mass (kg or lb).

julia> ton(Metric) # kg
lb⋅2⁴5³ = 907.18474 [kg] Metric

julia> ton(MTS) # t
lb⋅2 = 0.90718474 [t] MTS

julia> ton(English) # lb
2⁴5³ = 2000.0 [lbm] English

julia> ton(British) # slug
g₀⁻¹ft⋅2⁴5³ = 62.16190034313451 [slug] British

julia> ton(Gravitational) # hyl
g₀⁻¹lb⋅2⁴5³ = 92.50709875441665 [hyl] Gravitational
MeasureSystems.poundConstant
pound(U::UnitSystem) = mass(𝟏,U,English)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻¹ = 4.9793969039(15) × 10²⁹) [mₑ] Unified

English pound unit of mass (kg or lb).

julia> pound(Metric) # kg
lb = 0.45359237 [kg] Metric

julia> pound(CGS) # g
lb⋅2³5³ = 453.59237 [g] Gauss

julia> pound(English) # lb
𝟏 = 1.0 [lbm] English

julia> pound(British) # slug
g₀⁻¹ft = 0.031080950171567256 [slug] British

julia> pound(Gravitational) # hyl
g₀⁻¹lb = 0.046253549377208325 [hyl] Gravitational
MeasureSystems.ounceConstant
ounce(U::UnitSystem) = pound(U)/𝟐^4
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻⁵ = 3.11212306494(95) × 10²⁸) [mₑ] Unified

English ounce unit of mass (kg or lb).

julia> ounce(Metric) # kg
lb⋅2⁻⁴ = 0.028349523125 [kg] Metric

julia> ounce(CGS) # g
lb⋅2⁻¹5³ = 28.349523125 [g] Gauss

julia> ounce(English) # lb
2⁻⁴ = 0.0625 [lbm] English

julia> ounce(British) # slug
g₀⁻¹ft⋅2⁻⁴ = 0.0019425593857229535 [slug] British

julia> ounce(Gravitational) # hyl
g₀⁻¹lb⋅2⁻⁴ = 0.0028908468360755203 [hyl] Gravitational
MeasureSystems.grainConstant
grain(U::UnitSystem) = milli(U)*pound(U)/𝟕
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻⁴5⁻³7⁻¹ = 7.1134241484(22) × 10²⁵) [mₑ] Unified

Ideal grain seed of cereal, unit of mass (kg or lb).

julia> grain(Metric) # kg
lb⋅2⁻³5⁻³7⁻¹ = 6.479891×10⁻⁵ [kg] Metric

julia> grain(CGS) # g
lb⋅7⁻¹ = 0.06479891 [g] Gauss

julia> grain(English) # lb
2⁻³5⁻³7⁻¹ = 0.00014285714285714284 [lbm] English

julia> grain(QCD) # mₚ
𝘩⁻¹𝘤⋅R∞⁻¹α²μₑᵤ⋅μₚᵤ⁻¹lb⋅2⁻⁴5⁻³7⁻¹ = 3.8740918723(12) × 10²² [mₚ] QCD
MeasureSystems.slugConstant
slug(U::UnitSystem) = mass(𝟏,U,British)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⁻¹ = 1.60207357768(49) × 10³¹) [mₑ] Unified

British gravitational slug unit of mass (kg or lb).

julia> slug(Metric) # kg
g₀⋅ft⁻¹lb = 14.593902937206364 [kg] Metric

julia> slug(CGS) # g
g₀⋅ft⁻¹lb⋅2³5³ = 14593.902937206363 [g] Gauss

julia> slug(English) # lb
g₀⋅ft⁻¹ = 32.17404855643044 [lbm] English

julia> slug(British) # slug
𝟏 = 1.0 [slug] British

julia> slug(Gravitational) # hyl
ft⁻¹lb = 1.4881639435695537 [hyl] Gravitational
MeasureSystems.slinchConstant
slinch(U::UnitSystem) = mass(𝟏,U,IPS)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⋅3 = 1.92248829321(59) × 10³²) [mₑ] Unified

British gravitational slinch unit of mass (kg or lb).

julia> slinch(Metric) # kg
g₀⋅ft⁻¹lb⋅2²3 = 175.12683524647636 [kg] Metric

julia> slinch(CGS) # g
g₀⋅ft⁻¹lb⋅2⁵3⋅5³ = 175126.83524647637 [g] Gauss

julia> slinch(English) # lb
g₀⋅ft⁻¹2²3 = 386.0885826771653 [lbm] English

julia> slinch(British) # slug
2²3 = 12.0 [slug] British

julia> slinch(Gravitational) # hyl
ft⁻¹lb⋅2²3 = 17.857967322834646 [hyl] Gravitational
MeasureSystems.hylConstant
hyl(U::UnitSystem) = mass(𝟏,U,Gravitational)
mass : [M], [FL⁻¹T²], [M], [M], [M]
M⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅2⁻¹ = 1.07654374009(33) × 10³¹) [mₑ] Unified

Gravitational Metric hyl unit of mass (kg or lb).

julia> hyl(Metric) # kg
g₀ = 9.80665 [kg] Metric

julia> hyl(CGS) # g
g₀⋅2³5³ = 9806.65 [g] Gauss

julia> hyl(English) # lb
g₀⋅lb⁻¹ = 21.619962434553294 [lbm] English

julia> hyl(British) # slug
ft⋅lb⁻¹ = 0.6719689751395068 [slug] British

julia> hyl(Gravitational) # hyl
𝟏 = 1.0 [hyl] Gravitational

Force Units

MeasureSystems.dyneConstant
dyne(U::UnitSystem) = force(𝟏,U,Gauss)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴τ⁻¹2⁻⁷5⁻⁵ = 4.7166761794(29) × 10⁻⁵) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified

Historical dyne unit of force (N or lb).

julia> dyne(Metric) # N
2⁻⁵5⁻⁵ = 1.0×10⁻⁵ [N] Metric

julia> dyne(CGS) # dyn
𝟏 = 1.0 [dyn] Gauss

julia> dyne(English) # lb
g₀⁻¹lb⁻¹2⁻⁵5⁻⁵ = 2.248089430997105×10⁻⁶ [lbf] English

julia> dyne(FPS) # pdl
ft⁻¹lb⁻¹2⁻⁵5⁻⁵ = 7.233013851209893×10⁻⁵ [pdl] FPS

julia> dyne(Engineering) # kp
g₀⁻¹2⁻⁵5⁻⁵ = 1.0197162129779284×10⁻⁶ [kgf] Engineering
MeasureSystems.newtonConstant
newton(U::UnitSystem) = force(𝟏,U,Metric)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 4.7166761794(29)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified

Metric newton unit of force (N or lb).

julia> newton(Metric) # N
𝟏 = 1.0 [N] Metric

julia> newton(CGS) # dyn
2⁵5⁵ = 100000.0 [dyn] Gauss

julia> newton(English) # lb
g₀⁻¹lb⁻¹ = 0.22480894309971047 [lbf] English

julia> newton(FPS) # pdl
ft⁻¹lb⁻¹ = 7.233013851209893 [pdl] FPS

julia> newton(Engineering) # kp
g₀⁻¹ = 0.10197162129779283 [kgf] Engineering
MeasureSystems.poundalConstant
poundal(U::UnitSystem) = force(𝟏,U,FPS)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴ft⋅lb⋅τ⁻¹2⁻² = 0.65210384999(40)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified

Absolute English poundal unit of force (N or lb).

julia> poundal(Metric) # N
ft⋅lb = 0.13825495437600002 [N] Metric

julia> poundal(CGS) # dyn
ft⋅lb⋅2⁵5⁵ = 13825.495437600002 [dyn] Gauss

julia> poundal(English) # lb
g₀⁻¹ft = 0.031080950171567256 [lbf] English

julia> poundal(FPS) # pdl
𝟏 = 1.0 [pdl] FPS

julia> poundal(Engineering) # kp
g₀⁻¹ft⋅lb = 0.014098081850173099 [kgf] Engineering
MeasureSystems.poundforceConstant
poundforce(U::UnitSystem) = force(𝟏,U,English)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴g₀⋅lb⋅τ⁻¹2⁻² = 20.9808209330(13)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified

English poundforce unit of force used in engineering systems (N or lb).

julia> poundforce(Metric) # N
g₀⋅lb = 4.4482216152605 [N] Metric

julia> poundforce(CGS) # dyn
g₀⋅lb⋅2⁵5⁵ = 444822.16152604995 [dyn] Gauss

julia> poundforce(English) # lb
𝟏 = 1.0 [lbf] English

julia> poundforce(FPS) # pdl
g₀⋅ft⁻¹ = 32.17404855643044 [pdl] FPS

julia> poundforce(Engineering) # kp
lb = 0.45359237 [kgf] Engineering
MeasureSystems.kilopondConstant
kilopond(U::UnitSystem) = force(𝟏,U,Engineering)
force : [F], [F], [MLT⁻²], [MLT⁻²], [MLT⁻²]
F⋅(𝘩⁻¹𝘤⁻¹R∞⁻²α⁴g₀⋅τ⁻¹2⁻² = 46.254792454(28)) [ħ⁻¹𝘤³mₑ²ϕ⁻¹g₀⁻²] Unified

Gravitational kilopond unit of force used in engineering systems (N or lb).

julia> kilopond(Metric) # N
g₀ = 9.80665 [N] Metric

julia> kilopond(CGS) # dyn
g₀⋅2⁵5⁵ = 980665.0 [dyn] Gauss

julia> kilopond(English) # lb
lb⁻¹ = 2.2046226218487757 [lbf] English

julia> kilopond(FPS) # pdl
g₀⋅ft⁻¹lb⁻¹ = 70.9316352839675 [pdl] FPS

julia> kilopond(Engineering) # kp
𝟏 = 1.0 [kgf] Engineering

Pressure Units

MeasureSystems.psiConstant
psi(U::UnitSystem) = pressure(𝟏,U,IPS)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸g₀⋅ft⁻²lb⋅τ⁻³3² = 4.8493995628(59) × 10⁻²¹) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

English unit of pressure (Pa or lb⋅ft⁻²).

julia> psi(Metric) # Pa
g₀⋅ft⁻²lb⋅2⁴3² = 6894.75729316836 [Pa] Metric

julia> psi(English) # lb⋅ft⁻²
2⁴3² = 144.0 [lbf⋅ft⁻²] English

julia> psi(IPS) # lb⋅in⁻²
𝟏 = 1.0 [lb⋅in⁻²] IPS
MeasureSystems.pascalConstant
pascal(U::UnitSystem) = pressure(𝟏,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 7.0334594194(86) × 10⁻²⁵) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Metric unit of pressure (Pa or lb⋅ft⁻²).

julia> pascal(Metric) # Pa
𝟏 = 1.0 [Pa] Metric

julia> pascal(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹ = 0.02088543423315013 [lbf⋅ft⁻²] English

julia> pascal(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⁻⁴3⁻² = 0.0001450377377302092 [lb⋅in⁻²] IPS
MeasureSystems.baryeConstant
barye(U::UnitSystem) = pressure(𝟏,U,Gauss)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁵5⁻¹ = 7.0334594194(86) × 10⁻²⁶) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Historical unit of pressure (Pa or lb⋅ft⁻²).

julia> barye(Metric) # Pa
2⁻¹5⁻¹ = 0.1 [Pa] Metric

julia> barye(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lbf⋅ft⁻²] English

julia> barye(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⁻⁵3⁻²5⁻¹ = 1.4503773773020924×10⁻⁵ [lb⋅in⁻²] IPS
MeasureSystems.barConstant
bar(U::UnitSystem) = pressure(hecto*kilo,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸τ⁻³2⋅5⁵ = 7.0334594194(86) × 10⁻²⁰) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Reference unit of pressure (Pa or lb⋅ft⁻²).

julia> bar(Metric) # Pa
2⁵5⁵ = 100000.0 [Pa] Metric

julia> bar(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁵5⁵ = 2088.543423315013 [lbf⋅ft⁻²] English

julia> bar(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹2⋅3⁻²5⁵ = 14.503773773020923 [lb⋅in⁻²] IPS
MeasureSystems.technicalatmosphereConstant
technicalatmosphere(U::UnitSystem) = kilopond(U)/(centi*meter(U))^2
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸g₀⋅τ⁻³5⁴ = 6.8974674816(85) × 10⁻²⁰) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Gravitational Metric unit of pressure (Pa or lb⋅ft⁻²).

julia> technicalatmosphere(Metric) # Pa
g₀⋅2⁴5⁴ = 98066.5 [Pa] Metric

julia> technicalatmosphere(English) # lb⋅ft⁻²
ft²lb⁻¹2⁴5⁴ = 2048.161436225217 [lbf⋅ft⁻²] English

julia> technicalatmosphere(IPS) # lb⋅in⁻²
ft²lb⁻¹3⁻²5⁴ = 14.223343307119563 [lb⋅in⁻²] IPS
MeasureSystems.atmosphereConstant
atmosphere(U::UnitSystem) = pressure(atm = 101325.0,U)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸atm⋅τ⁻³2⁻⁴ = 7.1266527568(87) × 10⁻²⁰) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Standard pressure reference level of one atmosphere atm (Pa or lb⋅ft⁻²).

julia> atmosphere(Metric) # Pa
atm = 101325.0 [Pa] Metric

julia> atmosphere(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹atm = 2116.2166236739367 [lbf⋅ft⁻²] English

julia> atmosphere(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻⁴3⁻² = 14.695948775513449 [lb⋅in⁻²] IPS
MeasureSystems.inchmercuryConstant
inchmercury(U::UnitSystem) = pressure(inHg,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸inHg⁻¹τ⁻³2⁻⁴ = 2.3818029610(29) × 10⁻²¹) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Unit of pressure exerted by 1 inch of mercury at standard atmospheric conditions.

juila> inchmercury(Metric) # Pa
inHg⁻¹ = 3386.3890000000006 [Pa] Metric

julia> inchmercury(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹inHg⁻¹ = 70.72620474736304 [lbf⋅ft⁻²] English

julia> inchmercury(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹inHg⁻¹2⁻⁴3⁻² = 0.49115419963446555 [lb⋅in⁻²] IPS
MeasureSystems.torrConstant
torr(U::UnitSystem) = pressure(atm/𝟐^3/𝟓/𝟏𝟗,U,Metric)
pressure : [FL⁻²], [FL⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²], [ML⁻¹T⁻²]
FL⁻²⋅(𝘩⁻¹𝘤⁻¹R∞⁻⁴α⁸atm⋅τ⁻³2⁻⁷5⁻¹19⁻¹ = 9.377174680(11) × 10⁻²³) [ħ⁻³𝘤⁵mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Unit of pressure exerted by 1 mm of mercury at standard atmospheric conditions.

juila> torr(Metric) # Pa
atm⋅2⁻³5⁻¹19⁻¹ = 133.32236842105263 [Pa] Metric

julia> torr(English) # lb⋅ft⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻³5⁻¹19⁻¹ = 2.784495557465706 [lbf⋅ft⁻²] English

julia> torr(IPS) # lb⋅in⁻²
g₀⁻¹ft²lb⁻¹atm⋅2⁻⁷3⁻²5⁻¹19⁻¹ = 0.01933677470462296 [lb⋅in⁻²] IPS

Energy Units

MeasureSystems.ergConstant
erg(U::UnitSystem) = energy(𝟏,U,Gauss)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⁻⁸5⁻⁷ = 1.22143285705(37) × 10⁶) [𝘤²mₑ⋅g₀⁻¹] Unified

Historical unit of energy (J or lb⋅ft).

julia> erg(Metric) # J
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [J] Metric

julia> erg(CGS) # erg
𝟏 = 1.0 [erg] Gauss

julia> erg(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹2⁻⁷5⁻⁷ = 7.375621492772653×10⁻⁸ [lb⋅ft] British
MeasureSystems.jouleConstant
joule(U::UnitSystem) = energy(𝟏,U,Metric)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⁻¹ = 1.22143285705(37) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified

Metric unit of energy (J or lb⋅ft).

julia> joule(Metric) # J
𝟏 = 1.0 [J] Metric

julia> joule(CGS) # erg
2⁷5⁷ = 1.0×10⁷ [erg] Gauss

julia> joule(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹ = 0.7375621492772653 [lb⋅ft] British
MeasureSystems.footpoundConstant
footpound(U::UnitSystem) = poundforce(U)*foot(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²g₀⋅ft⋅lb⋅2⁻¹ = 1.65604059027(51) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified

English unit of energy in gravitational and engineering systems (J or lb⋅ft).

julia> footpound(Metric) # J
g₀⋅ft⋅lb = 1.3558179483314003 [J] Metric

julia> footpound(CGS) # erg
g₀⋅ft⋅lb⋅2⁷5⁷ = 1.3558179483314004×10⁷ [erg] Gauss

julia> footpound(British) # lb⋅ft
𝟏 = 1.0 [lb⋅ft] British
MeasureSystems.calorieConstant
calorie(U::UnitSystem) = kilocalorie(U)/𝟐^3/𝟓^3
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2⋅3²5⋅43⁻¹ = 5.1138185304(16) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified

Heat energy required to raise 1 g of water by 1 Kelvin (cal) in International units.

julia> calorie(International) # J
2²3²5⋅43⁻¹ = 4.186046511627907 [J] International

julia> calorie(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 4.186737323211057 [J] Metric

julia> calorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2²3²5⋅43⁻¹ = 3.087978978566891 [lbf⋅ft] English
MeasureSystems.kilocalorieConstant
kilocalorie(U::UnitSystem) = energy(𝟐^5*𝟓^4*𝟑^2/𝟒𝟑,U,International)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2⁴3²5⁴43⁻¹ = 5.1138185304(16) × 10¹⁶) [𝘤²mₑ⋅g₀⁻¹] Unified

Heat energy required to raise 1 kg of water by 1 Kelvin (kcal) in International units.

julia> kilocalorie(International) # J
2⁵3²5⁴43⁻¹ = 4186.0465116279065 [J] International

julia> kilocalorie(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2⁵3²5⁴43⁻¹ = 4186.737323211056 [J] Metric

julia> kilocalorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵3²5⁴43⁻¹ = 3087.978978566891 [lbf⋅ft] English
MeasureSystems.meancalorieConstant
meancalorie(U::UnitSystem) = energy(𝟐^2*𝟓*𝟑^2/𝟒𝟑,U,InternationalMean)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²2⋅3²5⋅43⁻¹⋅1.0001900224889804 = 5.1139463306(16) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified

Heat energy required to raise 1 g of water by 1 Kelvin (cal) in InternationalMean units.

julia> meancalorie(InternationalMean) # J
2²3²5⋅43⁻¹ = 4.186046511627907 [J] InternationalMean

julia> meancalorie(Metric) # J
2²3²5⋅43⁻¹⋅1.0001900224889804 = 4.186841954605034 [J] Metric

julia> meancalorie(English) # ft⋅lb
g₀⁻¹ft⁻¹lb⁻¹2²3²5⋅43⁻¹⋅1.0001900224889804 = 3.0880561507227156 [lbf⋅ft] English
MeasureSystems.earthcalorieConstant
earthcalorie(U::UnitSystem) = calorie(U)*(sqrt(g₀/GME)/τ)^3*𝟐^27*𝟓^21
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²g₀⁻³ᐟ²Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁶3²5⁻²⁰43⁻¹ = 5.136065976(16) × 10¹³) [𝘤²mₑ⋅g₀⁻¹] Unified

Heat energy required to raise 1 earthgram of water by 1 kelvin in Meridian units.

julia> earthcalorie(Meridian) # J
g₀⋅Ωᵢₜ⁻¹Vᵢₜ²GME⁻¹τ⁻²2²⁰3²5¹⁵43⁻¹ = 4.1746383635(84) [eJ] Meridian

julia> earthcalorie(Metric) # J
g₀⁻³ᐟ²Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁵3²5⁻²⁰43⁻¹ = 4.204951542(13) [J] Metric

julia> earthcalorie(British) # ft⋅lb
g₀⁻⁵ᐟ²ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²GME³ᐟ²τ³2⁻²⁵3²5⁻²⁰43⁻¹ = 3.1014130969(93) [lb⋅ft] British
MeasureSystems.thermalunitConstant
thermalunit(U::UnitSystem) = kilocalorie(U)*𝟑^2/𝟓/lb
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁴5⁵43⁻¹ = 1.28866059275(39) × 10¹⁶) [𝘤²mₑ⋅g₀⁻¹] Unified

Heat energy required to raise 1 lb of water by 1 Rankine (BTU) in International units.

julia> thermalunit(British) # ft⋅lb
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 778.1576129990752 [lb⋅ft] British

julia> thermalunit(International) # J
lb⋅2⁵5⁵43⁻¹ = 1054.8659767441861 [J] International

julia> thermalunit(Metric) # J
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁵5⁵43⁻¹ = 1055.0400583348662 [J] Metric
MeasureSystems.gasgallonConstant
gasgallon(U::UnitSystem) = 𝟐*𝟑*𝟏𝟗*kilo*thermalunit(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁸3⋅5⁸19⋅43⁻¹ = 1.46907307574(45) × 10²¹) [𝘤²mₑ⋅g₀⁻¹] Unified

Gasoline gallon equivalent reference unit of energy (J or lb⋅ft).

julia> gasgallon(Metric) # J
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁹3⋅5⁸19⋅43⁻¹ = 1.2027456665017475×10⁸ [J] Metric

julia> gasgallon(CGS) # erg
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2¹⁶3⋅5¹⁵19⋅43⁻¹ = 1.2027456665017475×10¹⁵ [erg] Gauss

julia> gasgallon(British) # lb⋅ft
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁹3⋅5⁸19⋅43⁻¹ = 8.870996788189459×10⁷ [lb⋅ft] British
MeasureSystems.tontntConstant
tontnt(U::UnitSystem) = giga*calorie(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹R∞⁻¹α²Ωᵢₜ⁻¹Vᵢₜ²2¹⁰3²5¹⁰43⁻¹ = 5.1138185304(16) × 10²²) [𝘤²mₑ⋅g₀⁻¹] Unified

Ton TNT equivalent reference unit of energy (J or lb⋅ft).

julia> tontnt(Metric) # J
Ωᵢₜ⁻¹Vᵢₜ²2¹¹3²5¹⁰43⁻¹ = 4.186737323211056×10⁹ [J] Metric

julia> tontnt(CGS) # erg
Ωᵢₜ⁻¹Vᵢₜ²2¹⁸3²5¹⁷43⁻¹ = 4.186737323211057×10¹⁶ [erg] Gauss

julia> tontnt(British) # lb⋅ft
g₀⁻¹ft⁻¹lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2¹¹3²5¹⁰43⁻¹ = 3.087978978566891×10⁹ [lb⋅ft] British
MeasureSystems.electronvoltConstant
electronvolt(U::UnitSystem) = elementarycharge(U)*volt(U)
energy : [FL], [FL], [ML²T⁻²], [ML²T⁻²], [ML²T⁻²]
FL⋅(𝘩⁻¹𝘤⁻¹𝘦⋅R∞⁻¹α²2⁻¹ = 1.95695118356(60) × 10⁻⁶) [𝘤²mₑ⋅g₀⁻¹] Unified

Unit of energy gained by a rest electron accelerated by 1 volt in vacuum (J or lb⋅ft).

julia> electronvolt(SI2019) # J
𝘦 = 1.602176634×10⁻¹⁹ [J] SI2019

julia> electronvolt(SI2019)/lightspeed(SI2019) # kg⋅m⋅s⁻¹
𝘤⁻¹𝘦 = 5.344285992678308×10⁻²⁸ [N⋅s] SI2019

julia> electronvolt(SI2019)/lightspeed(SI2019)^2 # kg
𝘤⁻²𝘦 = 1.7826619216278975×10⁻³⁶ [kg] SI2019

julia> electronvolt(SI2019)/planck(SI2019)/lightspeed(SI2019) # m⁻¹
𝘩⁻¹𝘤⁻¹𝘦 = 806554.393734921 [m⁻¹] SI2019

julia> electronvolt(SI2019)/boltzmann(SI2019) # K
kB⁻¹𝘦 = 11604.518121550082 [K] SI2019

Power Units

MeasureSystems.wattConstant
watt(U::UnitSystem) = power(𝟏,U,Metric)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴τ⁻¹2⁻² = 1.57331382212(96) × 10⁻⁸) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Metric watt unit of power (W or lb⋅ft⋅s⁻¹).

julia> watt(Metric) # W
𝟏 = 1.0 [W] Metric

julia> watt(English) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹lb⁻¹ = 0.7375621492772653 [lbf⋅ft⋅s⁻¹] English

julia> watt(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹ = 0.10197162129779283 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepowerwattConstant
horsepowerwatt(U::UnitSystem) = power(𝟐^4*𝟑^3/𝟓*τ,U,British)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅ft⋅lb⋅2²3³5⁻¹ = 1.15800476849(71) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Unit of power derived from Watt's exact original horse power estimate.

julia> horsepowerwatt(British) # lb⋅ft⋅s⁻¹
τ⋅2⁴3³5⁻¹ = 542.8672105403163 [lb⋅ft⋅s⁻¹] British

julia> horsepowerwatt(Metric) # W
g₀⋅ft⋅lb⋅τ⋅2⁴3³5⁻¹ = 736.0291076111621 [W] Metric

julia> horsepowerwatt(Engineering) # kgf⋅m⋅s⁻¹
ft⋅lb⋅τ⋅2⁴3³5⁻¹ = 75.05408142547782 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepowermetricConstant
horsepowermetric(U::UnitSystem) = power(𝟑*𝟓^2,U,Gravitational)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅τ⁻¹2⁻²3⋅5² = 1.15717034952(71) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Unit of power derived from raising 75 kp by 1 m in 1 in 1 s.

julia> horsepowermetric(British) # lb⋅ft⋅s⁻¹
ft⁻¹lb⁻¹3⋅5² = 542.476038840742 [lb⋅ft⋅s⁻¹] British

julia> horsepowermetric(Metric) # W
g₀⋅3⋅5² = 735.49875 [W] Metric

julia> horsepowermetric(Engineering) # kgf⋅m⋅s⁻¹
3⋅5² = 75.0 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.horsepowerConstant
horsepower(U::UnitSystem) = power(𝟐*𝟓^2*𝟏𝟏,U,British)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴g₀⋅ft⋅lb⋅τ⁻¹2⁻¹5²11 = 1.17321991511(72) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Unit of power derived from raising 550 lb by 1 ft in 1 in 1 s.

julia> horsepower(British) # lb⋅ft⋅s⁻¹
2⋅5²11 = 550.0 [lb⋅ft⋅s⁻¹] British

julia> horsepower(Metric) # W
g₀⋅ft⋅lb⋅2⋅5²11 = 745.6998715822701 [W] Metric

julia> horsepower(Engineering) # kgf⋅m⋅s⁻¹
ft⋅lb⋅2⋅5²11 = 76.0402249068 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.electricalhorsepowerConstant
electricalhorsepower(U::UnitSystem) = power(746,U,Metric)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴τ⁻¹2⁻¹⋅373 = 1.17369211130(72) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Unit of power for electrical motors in the United States.

julia> electricalhorsepower(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹lb⁻¹2⋅373 = 550.2213633608399 [lb⋅ft⋅s⁻¹] British

julia> electricalhorsepower(Metric) # W
2⋅373 = 746.0 [W] Metric

julia> electricalhorsepower(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹2⋅373 = 76.07082948815345 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.tonsrefrigerationConstant
tonsrefrigeration(U::UnitSystem) = frequency(𝟐*𝟓/𝟑,U,Metric)*thermalunit(U)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴lb⋅Ωᵢₜ⁻¹Vᵢₜ²τ⁻¹2⁴3⁻¹5⁶43⁻¹ = 5.5330303556(34) × 10⁻⁵) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Unit of power derived from melting of 1 short ton of ice in 24 hours.

julia> tonsrefrigeration(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 2593.8587099969172 [lb⋅ft⋅s⁻¹] British

julia> tonsrefrigeration(Metric) # W
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 3516.8001944495536 [W] Metric

julia> tonsrefrigeration(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⁶3⁻¹5⁶43⁻¹ = 358.613817608414 [kgf⋅m⋅s⁻¹] Engineering
MeasureSystems.boilerhorsepowerConstant
boilerhorsepower(U::UnitSystem) = frequency(1339/𝟐^4/𝟑^2,U,Metric)*thermalunit(U)
power : [FLT⁻¹], [FLT⁻¹], [ML²T⁻³], [ML²T⁻³], [ML²T⁻³]
FLT⁻¹⋅(𝘩⁻¹𝘤⁻²R∞⁻²α⁴lb⋅Ωᵢₜ⁻¹Vᵢₜ²τ⁻¹2⁻¹3⁻²5⁵43⁻¹⋅1339 = 0.000154348492627(95)) [ħ⁻¹𝘤⁴mₑ²ϕ⁻¹g₀⁻²] Unified

Unit of power derived from evaporating 34.5 lb of boiling water in 1 hour.

julia> boilerhorsepower(British) # lb⋅ft⋅s⁻¹
g₀⁻¹ft⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 7235.785026428902 [lb⋅ft⋅s⁻¹] British

julia> boilerhorsepower(Metric) # W
lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 9810.407209099902 [W] Metric

julia> boilerhorsepower(Engineering) # kgf⋅m⋅s⁻¹
g₀⁻¹lb⋅Ωᵢₜ⁻¹Vᵢₜ²2⋅3⁻²5⁵43⁻¹⋅1339 = 1000.3831287034718 [kgf⋅m⋅s⁻¹] Engineering

Electromagnetic Units

Charge Units

MeasureSystems.coulombConstant
coulomb(U::UnitSystem) = charge(𝟏,U,Metric)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²τ⋅2⁻³5⁻⁷ᐟ² = 1.890067014853257×10¹⁸) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified

Metric unit of charge (C).

julia> coulomb(Metric) # C
𝟏 = 1.0 [C] Metric

julia> coulomb(EMU) # abC
2⁻¹5⁻¹ = 0.1 [g¹ᐟ²cm¹ᐟ²] EMU

julia> coulomb(ESU) # statC
𝘤⋅2⋅5 = 2.99792458×10⁹ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.earthcoulombConstant
earthcoulomb(U::UnitSystem) = charge(𝟏,U,Meridian)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²g₀⁻¹GME⋅τ³2⁻²¹5⁻³⁵ᐟ² = 1.8955448174(38) × 10¹⁸) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified

Meridian unit of charge (C).

julia> earthcoulomb(Metric) # C
g₀⁻¹GME⋅τ²2⁻¹⁸5⁻¹⁴ = 1.0028982055(20) [C] Metric

julia> earthcoulomb(EMU) # abC
g₀⁻¹GME⋅τ²2⁻¹⁹5⁻¹⁵ = 0.10028982055(20) [g¹ᐟ²cm¹ᐟ²] EMU

julia> earthcoulomb(ESU) # statC
𝘤⋅g₀⁻¹GME⋅τ²2⁻¹⁷5⁻¹³ = 3.0066131814(60) × 10⁹ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.abcoulombConstant
abcoulomb(U::UnitSystem) = charge(𝟏,U,EMU)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²τ⋅2⁻²5⁻⁵ᐟ² = 1.8900670148532572×10¹⁹) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified

Electromagnetic unit of charge (C).

julia> abcoulomb(Metric) # C
2⋅5 = 10.0 [C] Metric

julia> abcoulomb(EMU) # abC
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²] EMU

julia> abcoulomb(ESU) # statC
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻¹] ESU
MeasureSystems.statcoulombConstant
statcoulomb(U::UnitSystem) = charge(𝟏,U,ESU)
charge : [Q], [Q], [Q], [M¹ᐟ²L¹ᐟ²], [M¹ᐟ²L³ᐟ²T⁻¹]
Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²τ⋅2⁻⁴5⁻⁹ᐟ² = 6.304584936733987×10⁸) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified

Electrostatic unit of charge (C).

julia> statcoulomb(Metric) # C
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [C] Metric

julia> statcoulomb(EMU) # abC
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²] EMU

julia> statcoulomb(ESU) # statC
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻¹] ESU

Current Units

MeasureSystems.ampereConstant
ampere(U::UnitSystem) = current(𝟏,U,Metric)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²2⁻⁴5⁻⁷ᐟ² = 0.00243457390395(75)) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified

Metric unit of current (C⋅s⁻¹).

julia> ampere(Metric) # C⋅s⁻¹
𝟏 = 1.0 [s⁻¹C] Metric

julia> ampere(EMU) # abC⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [Mx⋅cm⁻¹] EMU

julia> ampere(ESU) # statC⋅s⁻¹
𝘤⋅2⋅5 = 2.99792458×10⁹ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
MeasureSystems.abampereConstant
abampere(U::UnitSystem) = current(𝟏,U,EMU)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²2⁻³5⁻⁵ᐟ² = 0.0243457390395(75)) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified

Electromagnetic unit of current (C⋅s⁻¹).

julia> abampere(Metric) # C⋅s⁻¹
2⋅5 = 10.0 [s⁻¹C] Metric

julia> abampere(EMU) # abC⋅s⁻¹
𝟏 = 1.0 [Mx⋅cm⁻¹] EMU

julia> abampere(ESU) # statC⋅s⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻²] ESU
MeasureSystems.statampereConstant
statampere(U::UnitSystem) = current(𝟏,U,ESU)
current : [T⁻¹Q], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹Q⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²2⁻⁵5⁻⁹ᐟ² = 8.1208644146(25) × 10⁻¹³) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified

Electrostatic unit of current (C⋅s⁻¹).

julia> statampere(Metric) # C⋅s⁻¹
𝘤⁻¹2⁻¹5⁻¹ = 3.3356409519815207×10⁻¹⁰ [s⁻¹C] Metric

julia> statampere(EMU) # abC⋅s⁻¹
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [Mx⋅cm⁻¹] EMU

julia> statampere(ESU) # statC⋅s⁻¹
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻²] ESU

Electromotive Units

MeasureSystems.voltConstant
volt(U::UnitSystem) = electricpotential(𝟏,U,Metric)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²τ⁻¹2²5⁷ᐟ² = 6.4623785688(20) × 10⁻⁶) [ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified

Metric unit of electricpotential (V).

julia> volt(Metric) # V
𝟏 = 1.0 [V] Metric

julia> volt(EMU) # abV
2⁸5⁸ = 1.0×10⁸ [g¹ᐟ²cm³ᐟ²s⁻²] EMU

julia> volt(ESU) # statV
𝘤⁻¹2⁶5⁶ = 0.0033356409519815205 [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
MeasureSystems.abvoltConstant
abvolt(U::UnitSystem) = electricpotential(𝟏,U,EMU)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻³ᐟ²R∞⁻¹α²τ⁻¹2⁻⁶5⁻⁹ᐟ² = 6.4623785688(20) × 10⁻¹⁴) [ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified

Electromagnetic unit of electricpotential (V).

julia> abvolt(Metric) # V
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [V] Metric

julia> abvolt(EMU) # abV
𝟏 = 1.0 [g¹ᐟ²cm³ᐟ²s⁻²] EMU

julia> abvolt(ESU) # statV
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU
MeasureSystems.statvoltConstant
statvolt(U::UnitSystem) = electricpotential(𝟏,U,ESU)
electricpotential : [FLQ⁻¹], [FLQ⁻¹], [ML²T⁻²Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻²], [M¹ᐟ²L¹ᐟ²T⁻¹]
FLQ⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²τ⁻¹2⁻⁴5⁻⁵ᐟ² = 0.00193737235568(59)) [ħ⁻¹ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ⋅ϕ⁻¹ᐟ²λ¹ᐟ²αL⋅g₀⁻¹] Unified

Electrostatic unit of electricpotential (V).

julia> statvolt(Metric) # V
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [V] Metric

julia> statvolt(EMU) # abV
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm³ᐟ²s⁻²] EMU

julia> statvolt(ESU) # statV
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²s⁻¹] ESU

Inductance Units

MeasureSystems.henryConstant
henry(U::UnitSystem) = inductance(𝟏,U,Metric)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(R∞⋅α⁻²2⁷5⁷ = 2.06074224158(63) × 10¹⁸) [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified

Metric unit of inductance (H).

julia> henry(Metric) # H
𝟏 = 1.0 [H] Metric

julia> henry(EMU) # abH
2⁹5⁹ = 1.0×10⁹ [cm] EMU

julia> henry(ESU) # statH
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [cm⁻¹s²] ESU
MeasureSystems.abhenryConstant
abhenry(U::UnitSystem) = inductance(𝟏,U,EMU)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(R∞⋅α⁻²2⁻²5⁻² = 2.06074224158(63) × 10⁹) [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified

Electromagnetic unit of inductance (H).

julia> abhenry(Metric) # H
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [H] Metric

julia> abhenry(EMU) # abH
𝟏 = 1.0 [cm] EMU

julia> abhenry(ESU) # statH
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s²] ESU
MeasureSystems.stathenryConstant
stathenry(U::UnitSystem) = inductance(𝟏,U,ESU)
inductance : [FLT²Q⁻²], [FLT²Q⁻²], [ML²Q⁻²], [L], [L⁻¹T²]
FLT²Q⁻²⋅(𝘤²R∞⋅α⁻²2²5² = 1.85210276166(57) × 10³⁰) [ħ⋅𝘤⁻¹μ₀⋅mₑ⁻¹ϕ⋅λ⋅αL²g₀] Unified

Electrostatic unit of inductance (H).

julia> stathenry(Metric) # H
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [H] Metric

julia> stathenry(EMU) # abH
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm] EMU

julia> stathenry(ESU) # statH
𝟏 = 1.0 [cm⁻¹s²] ESU

Resistance Units

MeasureSystems.ohmConstant
ohm(U::UnitSystem) = resistance(𝟏,U,Metric)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⁻¹τ⁻¹2⁶5⁷ = 0.0026544187294380724) [𝘤⋅μ₀⋅λ⋅αL²] Unified

Metric unit of resistance (Ω).

julia> ohm(Metric) # Ω
𝟏 = 1.0 [Ω] Metric

julia> ohm(EMU) # abΩ
2⁹5⁹ = 1.0×10⁹ [cm⋅s⁻¹] EMU

julia> ohm(ESU) # statΩ
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [cm⁻¹s] ESU
MeasureSystems.abohmConstant
abohm(U::UnitSystem) = resistance(𝟏,U,EMU)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⁻¹τ⁻¹2⁻³5⁻² = 2.654418729438073×10⁻¹²) [𝘤⋅μ₀⋅λ⋅αL²] Unified

Electromagnetic unit of resistance (Ω).

julia> abohm(Metric) # Ω
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [Ω] Metric

julia> abohm(EMU) # abΩ
𝟏 = 1.0 [cm⋅s⁻¹] EMU

julia> abohm(ESU) # statΩ
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s] ESU
MeasureSystems.statohmConstant
statohm(U::UnitSystem) = resistance(𝟏,U,ESU)
resistance : [FLTQ⁻²], [FLTQ⁻²], [ML²T⁻¹Q⁻²], [LT⁻¹], [L⁻¹T]
FLTQ⁻²⋅(𝘤⋅τ⁻¹2⋅5² = 2.385672579618471×10⁹) [𝘤⋅μ₀⋅λ⋅αL²] Unified

Electrostatic unit of resistance (Ω).

julia> statohm(Metric) # Ω
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [Ω] Metric

julia> statohm(EMU) # abΩ
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm⋅s⁻¹] EMU

julia> statohm(ESU) # statΩ
𝟏 = 1.0 [cm⁻¹s] ESU

Conductance Units

MeasureSystems.siemensConstant
siemens(U::UnitSystem) = conductance(𝟏,U,Metric)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⋅τ⋅2⁻⁶5⁻⁷ = 376.73031346177066) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified

Metric unit of conductance (S).

julia> siemens(Metric) # S
𝟏 = 1.0 [S] Metric

julia> siemens(EMU) # abS
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [cm⁻¹s] EMU

julia> siemens(ESU) # statS
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [cm⋅s⁻¹] ESU
MeasureSystems.abmhoConstant
abmho(U::UnitSystem) = conductance(𝟏,U,EMU)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⋅τ⋅2³5² = 3.767303134617706×10¹¹) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified

Electromagnetic unit of conductance (S).

julia> abmho(Metric) # S
2⁹5⁹ = 1.0×10⁹ [S] Metric

julia> abmho(EMU) # abS
𝟏 = 1.0 [cm⁻¹s] EMU

julia> abmho(ESU) # statS
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm⋅s⁻¹] ESU
MeasureSystems.statmhoConstant
statmho(U::UnitSystem) = conductance(𝟏,U,ESU)
conductance : [F⁻¹L⁻¹T⁻¹Q²], [F⁻¹L⁻¹T⁻¹Q²], [M⁻¹L⁻²TQ²], [L⁻¹T], [LT⁻¹]
F⁻¹L⁻¹T⁻¹Q²⋅(𝘤⁻¹τ⋅2⁻¹5⁻² = 4.1916900439033643×10⁻¹⁰) [𝘤⁻¹μ₀⁻¹λ⁻¹αL⁻²] Unified

Electrostatic unit of conductance (S).

julia> statmho(Metric) # S
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [S] Metric

julia> statmho(EMU) # abS
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s] EMU

julia> statmho(ESU) # statS
𝟏 = 1.0 [cm⋅s⁻¹] ESU

Capacitance Units

MeasureSystems.faradConstant
farad(U::UnitSystem) = capacitance(𝟏,U,Metric)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(𝘤²R∞⋅α⁻²τ²2⁻⁵5⁻⁷ = 2.92472345084(90) × 10²³) [ħ⋅𝘤⁻³μ₀⁻¹mₑ⁻¹ϕ⋅λ⁻¹αL⁻²g₀] Unified

Metric unit of capacitance (F).

julia> farad(Metric) # F
𝟏 = 1.0 [F] Metric

julia> farad(EMU) # abF
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [cm⁻¹s²] EMU

julia> farad(ESU) # statF
𝘤²2⁻⁵5⁻⁵ = 8.987551787368176×10¹¹ [cm] ESU
MeasureSystems.abfaradConstant
abfarad(U::UnitSystem) = capacitance(𝟏,U,EMU)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(𝘤²R∞⋅α⁻²τ²2⁴5² = 2.92472345084(90) × 10³²) [ħ⋅𝘤⁻³μ₀⁻¹mₑ⁻¹ϕ⋅λ⁻¹αL⁻²g₀] Unified

Electromagnetic unit of capacitance (F).

julia> abfarad(Metric) # F
2⁹5⁹ = 1.0×10⁹ [F] Metric

julia> abfarad(EMU) # abF
𝟏 = 1.0 [cm⁻¹s²] EMU

julia> abfarad(ESU) # statF
𝘤²2⁴5⁴ = 8.987551787368175×10²⁰ [cm] ESU
MeasureSystems.statfaradConstant
statfarad(U::UnitSystem) = capacitance(𝟏,U,ESU)
capacitance : [F⁻¹L⁻¹Q²], [F⁻¹L⁻¹Q²], [M⁻¹L⁻²T²Q²], [L⁻¹T²], [L]
F⁻¹L⁻¹Q²⋅(R∞⋅α⁻²τ²5⁻² = 3.25419371152(10) × 10¹¹) [ħ⋅𝘤⁻³μ₀⁻¹mₑ⁻¹ϕ⋅λ⁻¹αL⁻²g₀] Unified

Electrostatic unit of capacitance (F).

julia> statfarad(Metric) # F
𝘤⁻²2⁵5⁵ = 1.1126500560536183×10⁻¹² [F] Metric

julia> statfarad(EMU) # abF
𝘤⁻²2⁻⁴5⁻⁴ = 1.1126500560536184×10⁻²¹ [cm⁻¹s²] EMU

julia> statfarad(ESU) # statF
𝟏 = 1.0 [cm] ESU

Magnetic Flux Units

MeasureSystems.weberConstant
weber(U::UnitSystem) = magneticflux(𝟏,U,Metric)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²2³5⁷ᐟ² = 5.017029284119592×10¹⁵) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified

Metric unit of magneticflux (Wb).

julia> weber(Metric) # Wb
𝟏 = 1.0 [Wb] Metric

julia> weber(EMU) # Mx
2⁸5⁸ = 1.0×10⁸ [Mx] EMU

julia> weber(ESU) # statWb
𝘤⁻¹2⁶5⁶ = 0.0033356409519815205 [g¹ᐟ²cm¹ᐟ²] ESU
MeasureSystems.maxwellConstant
maxwell(U::UnitSystem) = magneticflux(𝟏,U,EMU)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²2⁻⁵5⁻⁹ᐟ² = 5.017029284119592×10⁷) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified

Electromagnetic unit of magneticflux (Wb).

julia> maxwell(Metric) # Wb
2⁻⁸5⁻⁸ = 1.0×10⁻⁸ [Wb] Metric

julia> maxwell(EMU) # Mx
𝟏 = 1.0 [Mx] EMU

julia> maxwell(ESU) # statWb
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm¹ᐟ²] ESU
MeasureSystems.statweberConstant
statweber(U::UnitSystem) = magneticflux(𝟏,U,ESU)
magneticflux : [FLTQ⁻¹C], [FLTQ⁻¹], [ML²T⁻¹Q⁻¹], [M¹ᐟ²L³ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²]
FLTQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²2⁻³5⁻⁵ᐟ² = 1.5040675409441933×10¹⁸) [ħ¹ᐟ²𝘤¹ᐟ²μ₀¹ᐟ²ϕ¹ᐟ²λ¹ᐟ²] Unified

Electrostatic unit of magneticflux (Wb).

julia> statweber(Metric) # Wb
𝘤⋅2⁻⁶5⁻⁶ = 299.792458 [Wb] Metric

julia> statweber(EMU) # Mx
𝘤⋅2²5² = 2.99792458×10¹⁰ [Mx] EMU

julia> statweber(ESU) # statWb
𝟏 = 1.0 [g¹ᐟ²cm¹ᐟ²] ESU

Magnetic Flux Density Units

MeasureSystems.teslaConstant
tesla(U::UnitSystem) = magneticfluxdensity(𝟏,U,Metric)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⋅5⁷ᐟ² = 7.4813429063(46) × 10⁻¹⁰) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified

Metric unit of magneticfluxdensity (T).

julia> tesla(Metric) # T
𝟏 = 1.0 [T] Metric

julia> tesla(EMU) # G
2⁴5⁴ = 10000.0 [G] EMU

julia> tesla(ESU) # statT
𝘤⁻¹2²5² = 3.3356409519815204×10⁻⁷ [g¹ᐟ²cm⁻³ᐟ²] ESU
MeasureSystems.gaussConstant
gauss(U::UnitSystem) = magneticfluxdensity(𝟏,U,EMU)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⁻³5⁻¹ᐟ² = 7.4813429063(46) × 10⁻¹⁴) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified

Electromagnetic unit of magneticfluxdensity (T).

julia> gauss(Metric) # T
2⁻⁴5⁻⁴ = 0.0001 [T] Metric

julia> gauss(EMU) # G
𝟏 = 1.0 [G] EMU

julia> gauss(ESU) # statT
𝘤⁻¹2⁻²5⁻² = 3.335640951981521×10⁻¹¹ [g¹ᐟ²cm⁻³ᐟ²] ESU
MeasureSystems.statteslaConstant
stattesla(U::UnitSystem) = magneticfluxdensity(𝟏,U,ESU)
magneticfluxdensity : [FL⁻¹TQ⁻¹C], [FL⁻¹TQ⁻¹], [MT⁻¹Q⁻¹], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L⁻³ᐟ²]
FL⁻¹TQ⁻¹C⋅(𝘩⁻¹ᐟ²𝘤¹ᐟ²R∞⁻²α⁴τ⁻²2⁻¹5³ᐟ² = 0.0022428501790(14)) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified

Electrostatic unit of magneticfluxdensity (T).

julia> stattesla(Metric) # T
𝘤⋅2⁻²5⁻² = 2.9979245800000005×10⁶ [T] Metric

julia> stattesla(EMU) # G
𝘤⋅2²5² = 2.99792458×10¹⁰ [G] EMU

julia> stattesla(ESU) # statT
𝟏 = 1.0 [g¹ᐟ²cm⁻³ᐟ²] ESU

Magnetic Specialized Units

MeasureSystems.oerstedConstant
oersted(U::UnitSystem) = magneticfield(𝟏,U,EMU)
magneticfield : [L⁻¹T⁻¹QRC⁻¹], [L⁻¹T⁻¹Q], [L⁻¹T⁻¹Q], [M¹ᐟ²L⁻¹ᐟ²T⁻¹], [M¹ᐟ²L¹ᐟ²T⁻²]
L⁻¹T⁻¹QRC⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻²α⁴τ⁻²2⁻³5⁻¹ᐟ² = 7.4813429063(46) × 10⁻¹⁴) [ħ⁻³ᐟ²𝘤⁵ᐟ²μ₀⁻¹ᐟ²mₑ²ϕ⁻³ᐟ²λ¹ᐟ²g₀⁻²] Unified

Electromagnetic unit of magneticfield (Oe).

julia> oersted(Metric) # A⋅m⁻¹
τ⁻¹2²5³ = 79.57747154594767 [m⁻¹s⁻¹C] Metric

julia> oersted(EMU) # Oe
𝟏 = 1.0 [G] EMU

julia> oersted(ESU) # statA⋅cm⁻¹
𝘤⋅2²5² = 2.99792458×10¹⁰ [g¹ᐟ²cm¹ᐟ²s⁻²] ESU
MeasureSystems.gilbertConstant
gilbert(U::UnitSystem) = abampere(U)/𝟐/turn(U)
nonstandard : [T⁻¹QA⁻¹], [T⁻¹Q], [T⁻¹Q], [M¹ᐟ²L¹ᐟ²T⁻¹], [M¹ᐟ²L³ᐟ²T⁻²]
T⁻¹QA⁻¹⋅(𝘩⁻¹ᐟ²𝘤⁻¹ᐟ²R∞⁻¹α²τ⁻¹2⁻⁴5⁻⁵ᐟ² = 0.00193737235568(59)) [ħ⁻¹ᐟ²𝘤³ᐟ²μ₀⁻¹ᐟ²mₑ⋅ϕ⁻³ᐟ²λ⁻¹ᐟ²αL⁻¹g₀⁻¹] Unified

Electromagnetic unit of magnetization (Gb).

julia> gilbert(Metric) # A⋅rad⁻¹
τ⁻¹5 = 0.7957747154594768 [s⁻¹C] Metric

julia> gilbert(EMU) # Gb
τ⁻¹2⁻¹ = 0.07957747154594767 [Mx⋅cm⁻¹] EMU

julia> gilbert(ESU) # statA⋅rad⁻¹
𝘤⋅τ⁻¹2⋅5² = 2.385672579618471×10⁹ [g¹ᐟ²cm³ᐟ²s⁻²] ESU

Thermodynamic Units

MeasureSystems.kelvinConstant
kelvin(U::UnitSystem) = temperature(𝟏,U,Metric)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³5³ = 1.686370052070(49) × 10⁻¹⁰) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

Metric unit of temperature (K or °R).

julia> kelvin(Metric) # K
𝟏 = 1.0 [K] Metric

julia> kelvin(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³ = 0.99999999966(31) [K] SI2019

julia> kelvin(British) # °R
3²5⁻¹ = 1.8 [°R] British
MeasureSystems.rankineConstant
rankine(U::UnitSystem) = temperature(𝟏,U,English)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³3⁻²5⁴ = 9.36872251150(27) × 10⁻¹¹) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

English unit of temperature (K or °R).

julia> rankine(Metric) # K
3⁻²5 = 0.5555555555555556 [K] Metric

julia> rankine(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴ = 0.55555555536(17) [K] SI2019

julia> rankine(British) # °R
𝟏 = 1.0 [°R] British
MeasureSystems.celsiusConstant
celsius(U::UnitSystem) = temperature(T₀,U,Metric)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹T₀⋅2³5³ = 4.60631979723(13) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

Metric unit of temperature (K or °R).

julia> celsius(Metric) # K
T₀ = 273.15 [K] Metric

julia> celsius(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹T₀⋅2⁴5³ = 273.149999906(84) [K] SI2019

julia> celsius(British) # °R
T₀⋅3²5⁻¹ = 491.66999999999996 [°R] British
MeasureSystems.fahrenheitConstant
fahrenheit(U::UnitSystem) = temperature(Constant(459.67),U,English)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³3⁻²5⁴⋅459.67 = 4.30652067686(13) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

English unit of temperature (K or °R).

julia> fahrenheit(Metric) # K
3⁻²5⋅459.67 = 255.37222222222223 [K] Metric

julia> fahrenheit(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴3⁻²5⁴⋅459.67 = 255.372222134(79) [K] SI2019

julia> fahrenheit(British) # °R
459.67 = 459.67 [°R] British
MeasureSystems.sealevelConstant
sealevel(U::UnitSystem) = temperature(T₀+𝟑*𝟓,U)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³5³⋅288.15 = 4.85927530504(14) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

Standard temperature reference at sealevel (K or °R).

julia> sealevel(Metric) # K
288.15 = 288.15 [K] Metric

julia> sealevel(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅288.15 = 288.149999901(89) [K] SI2019

julia> sealevel(English) # °R
3²5⁻¹⋅288.15 = 518.67 [°R] English
MeasureSystems.boilingConstant
boiling(U::UnitSystem) = temperature(T₀+Constant(99.9839),U)
temperature : [Θ], [Θ], [Θ], [Θ], [Θ]
Θ⋅(kB⋅NA⋅𝘤⁻²μₑᵤ⁻¹2³5³⋅373.1339 = 6.29241834372(18) × 10⁻⁸) [kB⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

Standard temperature reference at boiling point of water (K or °R).

julia> boiling(Metric) # K
373.1339 = 373.1339 [K] Metric

julia> boiling(SI2019) # K
NA⋅𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹2⁴5³⋅373.1339 = 373.13389987(11) [K] SI2019

julia> boiling(English) # °R
3²5⁻¹⋅373.1339 = 671.64102 [°R] English
MeasureSystems.moleConstant
mole(U::UnitSystem) = molaramount(𝟏,U,Metric)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²2⁻⁴5⁻³ = 1.09776910575(34) × 10²⁷) [mₑ⋅Mᵤ⁻¹] Unified

Molecular molaramount unit (mol or lb-mol).

julia> mole(Metric) # mol
𝟏 = 1.0 [mol] Metric

julia> mole(English) # lb-mol
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [lb-mol] English

julia> mole(British) # slug-mol
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [slug-mol] British
MeasureSystems.earthmoleConstant
earthmole(U::UnitSystem) = molaramount(𝟏,U,Meridian)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⁻³ᐟ²GME³ᐟ²τ³2⁻³¹5⁻²⁴ = 1.1025449025(33) × 10²⁷) [mₑ⋅Mᵤ⁻¹] Unified

Molecular molaramount unit (mol or lb-mol).

julia> earthmole(Metric) # mol
g₀⁻³ᐟ²GME³ᐟ²τ³2⁻²⁷5⁻²¹ = 1.0043504565(30) [mol] Metric

julia> earthmole(English) # lb-mol
g₀⁻³ᐟ²lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 0.0022142137367(67) [lb-mol] English

julia> earthmole(British) # slug-mol
g₀⁻⁵ᐟ²ft⋅lb⁻¹GME³ᐟ²τ³2⁻³⁰5⁻²⁴ = 6.881986682(21) × 10⁻⁵ [slug-mol] British
MeasureSystems.poundmoleConstant
poundmole(U::UnitSystem) = molaramount(𝟏,U,English)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²lb⋅2⁻¹ = 4.9793969039(15) × 10²⁹) [mₑ⋅Mᵤ⁻¹] Unified

Molecular molaramount unit (mol or lb-mol).

julia> poundmole(Metric) # mol
lb⋅2³5³ = 453.59237 [mol] Metric

julia> poundmole(English) # lb-mol
𝟏 = 1.0 [lb-mol] English

julia> poundmole(British) # slug-mol
g₀⁻¹ft = 0.031080950171567256 [slug-mol] British
MeasureSystems.slugmoleConstant
slugmole(U::UnitSystem) = molaramount(𝟏,U,British)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⁻¹ = 1.60207357768(49) × 10³¹) [mₑ⋅Mᵤ⁻¹] Unified

Molecular molaramount unit (mol or lb-mol).

julia> slugmole(Metric) # mol
g₀⋅ft⁻¹lb⋅2³5³ = 14593.902937206363 [mol] Metric

julia> slugmole(English) # lb-mol
g₀⋅ft⁻¹ = 32.17404855643044 [lb-mol] English

julia> slugmole(British) # slug-mol
𝟏 = 1.0 [slug-mol] British
MeasureSystems.slinchmoleConstant
slinchmole(U::UnitSystem) = molaramount(𝟏,U,IPS)
molaramount : [N], [N], [N], [N], [N]
N⋅(𝘩⁻¹𝘤⋅R∞⁻¹α²g₀⋅ft⁻¹lb⋅2⋅3 = 1.92248829321(59) × 10³²) [mₑ⋅Mᵤ⁻¹] Unified

Molecular molaramount unit (mol or lb-mol).

julia> slinchmole(Metric) # mol
g₀⋅ft⁻¹lb⋅2⁵3⋅5³ = 175126.83524647637 [mol] Metric

julia> slinchmole(English) # lb-mol
g₀⋅ft⁻¹2²3 = 386.0885826771653 [lb-mol] English

julia> slinchmole(British) # slug-mol
2²3 = 12.0 [slug-mol] British
MeasureSystems.katalConstant
katal(U::UnitSystem) = catalysis(𝟏,U,Metric)
catalysis : [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N], [T⁻¹N]
T⁻¹N⋅(𝘩⁻¹R∞⁻²α⁴τ⁻¹2⁻⁵5⁻³ = 1.41402394541(87) × 10⁶) [ħ⁻¹𝘤²mₑ²Mᵤ⁻¹ϕ⁻¹g₀⁻¹] Unified

Metric unit of catalysis (mol⋅s⁻¹ or lb-mol⋅s⁻¹).

julia> katal(Metric) # mol⋅s⁻¹
𝟏 = 1.0 [kat] Metric

julia> katal(English) # lb-mol⋅s⁻¹
lb⁻¹2⁻³5⁻³ = 0.002204622621848776 [s⁻¹lb-mol] English

julia> katal(British) # slug-mol⋅s⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻³5⁻³ = 6.852176585679177×10⁻⁵ [s⁻¹slug-mol] British
MeasureSystems.amagatConstant
amagat(U::UnitSystem) = loschmidt(U)/avogadro(U)
molarity : [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N], [L⁻³N]
L⁻³N⋅(kB⁻¹R∞⁻³α⁶μₑᵤ⁻¹T₀⁻¹atm⋅τ⁻³2⁻³ = 2.8202760171(26) × 10⁻⁹) [ħ⁻³𝘤³mₑ⁴Mᵤ⁻¹ϕ⁻³g₀⁻³] Unified

Number of moles of an ideal gas in a unit volume (mol⋅m⁻³ or lb-mol⋅ft⁻³).

julia> amagat(Metric) # mol⋅m⁻³
kB⁻¹𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹T₀⁻¹atm⋅2⁴5³ = 44.615033390(14) [m⁻³mol] Metric

julia> amagat(SI2019) # mol⋅m⁻³
kB⁻¹NA⁻¹T₀⁻¹atm = 44.615033405470314 [m⁻³mol] SI2019

julia> amagat(English) # slug-mol⋅ft⁻³
kB⁻¹𝘩⋅𝘤⁻¹R∞⋅α⁻²μₑᵤ⁻¹ft³lb⁻¹T₀⁻¹atm⋅2 = 0.00278522554558(86) [ft⁻³lb-mol] English

Photometric Units

MeasureSystems.lumenConstant
lumen(U::UnitSystem) = luminousflux(𝟏,U,Metric)
luminousflux : [J], [J], [J], [J], [J]
J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 2.3034677403(14) × 10⁻¹¹) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻¹g₀⁻²] Unified

Common unit of luminousflux (lm).

julia> lumen(Metric) # lm
𝟏 = 1.0 [cd] Metric

julia> lumen(CGS) # lm
𝟏 = 1.0 [cd] Gauss

julia> lumen(English) # lm
𝟏 = 1.0 [lm] English
MeasureSystems.candelaConstant
candela(U::UnitSystem) = luminousintensity(𝟏,U,Metric)
luminousintensity : [JA⁻²], [J], [J], [J], [J]
JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻²α⁴τ⁻¹2⁻² = 2.3034677403(14) × 10⁻¹¹) [ħ⁻¹𝘤⁴mₑ²Kcd⋅ϕ⁻³g₀⁻²] Unified

Common unit of luminousintensity (cd).

julia> candela(Engineering) # lm⋅rad⁻²
𝟏 = 1.0 [lm⋅rad⁻²] Engineering

julia> candela(MetricDegree) # lm⋅deg⁻²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [lm⋅deg⁻²] MetricDegree

julia> candela(MetricGradian) # lm⋅gon⁻²
τ²2⁻⁸5⁻⁴ = 0.00024674011002723397 [lm⋅gon⁻²] MetricGradian

julia> candela(CGS) # cd
𝟏 = 1.0 [cd] Gauss

julia> candela(English) # cd
𝟏 = 1.0 [cd] English
MeasureSystems.luxConstant
lux(U::UnitSystem) = illuminance(𝟏,U,Metric)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 3.4349076043(42) × 10⁻³⁶) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻³g₀⁻⁴] Unified

Metric unit of illuminance (lx).

julia> lux(Metric) # lx
𝟏 = 1.0 [lx] Metric

julia> lux(CGS) # ph
2⁻⁴5⁻⁴ = 0.0001 [ph] Gauss

julia> lux(English) # fc
ft² = 0.09290304 [fc] English
MeasureSystems.photConstant
phot(U::UnitSystem) = illuminance(𝟏,U,Gauss)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³5⁴ = 3.4349076043(42) × 10⁻³²) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻³g₀⁻⁴] Unified

Historic unit of illuminance (lx).

julia> phot(Metric) # lx
2⁴5⁴ = 10000.0 [lx] Metric

julia> phot(CGS) # ph
𝟏 = 1.0 [ph] Gauss

julia> phot(English) # fc
ft²2⁴5⁴ = 929.0304000000001 [fc] English
MeasureSystems.footcandleConstant
footcandle(U::UnitSystem) = illuminance(𝟏,U,English)
illuminance : [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²J⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸ft⁻²τ⁻³2⁻⁴ = 3.6973037742(45) × 10⁻³⁵) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻³g₀⁻⁴] Unified

English unit of illuminance (lx).

julia> footcandle(Metric) # lx
ft⁻² = 10.76391041670972 [lx] Metric

julia> footcandle(CGS) # ph
ft⁻²2⁻⁴5⁻⁴ = 0.0010763910416709721 [ph] Gauss

julia> footcandle(English) # fc
𝟏 = 1.0 [fc] English
MeasureSystems.nitConstant
nit(U::UnitSystem) = luminance(𝟏,U,Metric)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 3.4349076043(42) × 10⁻³⁶) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified

Metric unit of luminance (lx⋅rad⁻²).

julia> nit(Engineering) # nt
𝟏 = 1.0 [nt] Engineering

julia> nit(MetricDegree) # lm⋅m⁻²deg⁻²
τ²2⁻⁶3⁻⁴5⁻² = 0.0003046174197867087 [m⁻²lm⋅deg⁻²] MetricDegree

julia> nit(MetricGradian) # lm⋅m⁻²gon⁻²
τ²2⁻⁸5⁻⁴ = 0.00024674011002723397 [m⁻²lm⋅gon⁻²] MetricGradian

julia> nit(CGS) # sb
2⁻⁴5⁻⁴ = 0.0001 [ph] Gauss

julia> nit(English) # fc
ft² = 0.09290304 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.apostilbConstant
apostilb(U::UnitSystem) = luminance(𝟐/turn(U),U,Metric)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⁻³ = 1.0933650486(13) × 10⁻³⁶) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified

Metric unit of luminance (lx⋅rad⁻²).

julia> apostilb(Engineering) # nt
τ⁻¹2 = 0.3183098861837907 [nt] Engineering

julia> apostilb(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻⁵3⁻⁴5⁻² = 9.696273622190722×10⁻⁵ [m⁻²lm⋅deg⁻²] MetricDegree

julia> apostilb(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻⁷5⁻⁴ = 7.853981633974483×10⁻⁵ [m⁻²lm⋅gon⁻²] MetricGradian

julia> apostilb(CGS) # sb
τ⁻¹2⁻³5⁻⁴ = 3.183098861837907×10⁻⁵ [ph] Gauss

julia> apostilb(English) # fc
ft²τ⁻¹2 = 0.029571956088528157 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.stilbConstant
stilb(U::UnitSystem) = luminance(𝟏,U,Gauss)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻³5⁴ = 3.4349076043(42) × 10⁻³²) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified

Historic unit of luminance (lx⋅rad⁻²).

julia> stilb(Engineering) # nt
2⁴5⁴ = 10000.0 [nt] Engineering

julia> stilb(MetricDegree) # lm⋅m⁻²deg⁻²
τ²2⁻²3⁻⁴5² = 3.0461741978670855 [m⁻²lm⋅deg⁻²] MetricDegree

julia> stilb(MetricGradian) # lm⋅m⁻²gon⁻²
τ²2⁻⁴ = 2.4674011002723395 [m⁻²lm⋅gon⁻²] MetricGradian

julia> stilb(CGS) # sb
𝟏 = 1.0 [ph] Gauss

julia> stilb(English) # fc
ft²2⁴5⁴ = 929.0304000000001 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.lambertConstant
lambert(U::UnitSystem) = luminance(𝟐/turn(U),U,Gauss)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⋅5⁴ = 1.0933650486(13) × 10⁻³²) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified

Historic unit of luminance (nt).

julia> lambert(Engineering) # nt
τ⁻¹2⁵5⁴ = 3183.098861837907 [nt] Engineering

julia> lambert(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻¹3⁻⁴5² = 0.9696273622190719 [m⁻²lm⋅deg⁻²] MetricDegree

julia> lambert(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻³ = 0.7853981633974483 [m⁻²lm⋅gon⁻²] MetricGradian

julia> lambert(CGS) # sb
τ⁻¹2 = 0.3183098861837907 [ph] Gauss

julia> lambert(English) # fc
ft²τ⁻¹2⁵5⁴ = 295.71956088528157 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.footlambertConstant
footlambert(U::UnitSystem) = luminance(𝟐/turn(U),U,English)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸ft⁻²τ⁻⁴2⁻³ = 1.1768883436(14) × 10⁻³⁵) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified

English unit of luminance (nt).

julia> footlambert(Engineering) # nt
ft⁻²τ⁻¹2 = 3.42625909963539 [nt] Engineering

julia> footlambert(MetricDegree) # lm⋅m⁻²deg⁻²
ft⁻²τ⋅2⁻⁵3⁻⁴5⁻² = 0.001043698206451664 [m⁻²lm⋅deg⁻²] MetricDegree

julia> footlambert(MetricGradian) # lm⋅m⁻²gon⁻²
ft⁻²τ⋅2⁻⁷5⁻⁴ = 0.0008453955472258477 [m⁻²lm⋅gon⁻²] MetricGradian

julia> footlambert(CGS) # sb
ft⁻²τ⁻¹2⁻³5⁻⁴ = 0.00034262590996353903 [ph] Gauss

julia> footlambert(English) # fc
τ⁻¹2 = 0.3183098861837907 [ft⁻²lm⋅rad⁻²] English
MeasureSystems.brilConstant
bril(U::UnitSystem) = centi*nano*lambert(U)
luminance : [L⁻²JA⁻²], [L⁻²J], [L⁻²J], [L⁻²J], [L⁻²J]
L⁻²JA⁻²⋅(𝘩⁻¹𝘤⁻²Kcd⁻¹R∞⁻⁴α⁸τ⁻⁴2⁻¹⁰5⁻⁷ = 1.0933650486(13) × 10⁻⁴³) [ħ⁻³𝘤⁶mₑ⁴Kcd⋅ϕ⁻⁵g₀⁻⁴] Unified

Reference unit of luminance (nt).

julia> bril(Engineering) # nt
τ⁻¹2⁻⁶5⁻⁷ = 3.1830988618379075×10⁻⁸ [nt] Engineering

julia> bril(MetricDegree) # lm⋅m⁻²deg⁻²
τ⋅2⁻¹²3⁻⁴5⁻⁹ = 9.69627362219072×10⁻¹² [m⁻²lm⋅deg⁻²] MetricDegree

julia> bril(MetricGradian) # lm⋅m⁻²gon⁻²
τ⋅2⁻¹⁴5⁻¹¹ = 7.853981633974482×10⁻¹² [m⁻²lm⋅gon⁻²] MetricGradian

julia> bril(CGS) # sb
τ⁻¹2⁻¹⁰5⁻¹¹ = 3.1830988618379067×10⁻¹² [ph] Gauss

julia> bril(English) # fc
ft²τ⁻¹2⁻⁶5⁻⁷ = 2.957195608852816×10⁻⁹ [ft⁻²lm⋅rad⁻²] English
MeasureSystems.talbotConstant
talbot(U::UnitSystem) = luminousenergy(𝟏,U,Metric)
luminousenergy : [TJ], [TJ], [TJ], [TJ], [TJ]
TJ⋅(𝘩⁻¹𝘤⁻¹Kcd⁻¹R∞⁻¹α²2⁻¹ = 1.78828352208(55) × 10¹⁰) [𝘤²mₑ⋅Kcd⋅g₀⁻¹] Unified

Common unit of luminousenergy (lm⋅s).

julia> talbot(Metric) # lm⋅s
𝟏 = 1.0 [s⋅lm] Metric
MeasureSystems.lumergConstant
lumerg(U::UnitSystem) = luminousenergy(𝟏𝟎^-7,U,Metric)
luminousenergy : [TJ], [TJ], [TJ], [TJ], [TJ]
TJ⋅(𝘩⁻¹𝘤⁻¹Kcd⁻¹R∞⁻¹α²2⁻⁸5⁻⁷ = 1788.28352208(55)) [𝘤²mₑ⋅Kcd⋅g₀⁻¹] Unified

Reference unit of luminousenergy (lm⋅s).

julia> lumerg(CGS) # lm⋅s
2⁻⁷5⁻⁷ = 1.0000000000000001×10⁻⁷ [s⋅lm] Gauss

Specialized Units

MeasureSystems.neperFunction
neper(U::UnitSystem) = U(𝟏,log(𝟙))

Logarithmic unit expressing the ratio of a dimensional quanty.

julia> neper(Metric)
𝟏 = 1.0 [log(𝟙)] Metric

julia> exp(neper(Metric))
exp(𝟙) = 2.718281828459045 [𝟙] Metric
MeasureSystems.belFunction
bel(U::UnitSystem) = U(𝟏,log10(𝟙))

Logarithmic unit expressing the ratio of a dimensional quanty.

julia> bel(Metric)
𝟏 = 1.0 [log10(𝟙)] Metric

julia> exp10(bel(Metric))
exp10(𝟙) = 10.0 [𝟙] Metric
MeasureSystems.decibelFunction
decibel(U::UnitSystem) = U(𝟏,logdb(𝟙))

Logarithmic unit expressing the ratio of a dimensional quanty.

julia> decibel(Metric)
𝟏 = 1.0 [dB(𝟙)] Metric

julia> expdb(decibel(Metric))
1.2589254117941673^(𝟙) = 1.2589254117941673 [𝟙] Metric
MeasureSystems.hertzConstant
hertz(U::UnitSystem) = 𝟏/second(U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻¹ = 1.28808866819(39) × 10⁻²¹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Metric unit of frequency (s⁻¹).

julia> hertz(Engineering) # rad⋅s⁻¹
𝟏 = 1.0 [Hz] Engineering

julia> hertz(IAU) # D⁻¹
2⁷3³5² = 86400.0 [D⁻¹] IAU☉
MeasureSystems.apmConstant
apm(U::UnitSystem) = 𝟏/minute(U)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁻³3⁻¹5⁻¹ = 2.14681444698(66) × 10⁻²³) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Actions per minute apm unit of frequency (s⁻¹).

julia> apm(Metric) # s⁻¹
2⁻²3⁻¹5⁻¹ = 0.016666666666666666 [Hz] Metric

julia> apm(MPH) # h⁻¹
2²3⋅5 = 60.0 [h⁻¹] MPH

julia> apm(IAU) # D⁻¹
2⁵3²5 = 1440.0 [D⁻¹] IAU☉
MeasureSystems.rpmConstant
rpm(U::UnitSystem) = turn(U)/minute(U)
angularfrequency : [T⁻¹A], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹A⋅(𝘤⁻¹R∞⁻¹α²2⁻³3⁻¹5⁻¹ = 1.34888329905(41) × 10⁻²²) [ħ⁻¹𝘤²mₑ⋅g₀⁻¹] Unified

Revolutions per minute rpm unit of angularfrequency (rad⋅s⁻¹).

julia> rpm(Engineering) # rad⋅s⁻¹
τ⋅2⁻²3⁻¹5⁻¹ = 0.10471975511965977 [s⁻¹rad] Engineering

julia> rpm(MetricGradian) # gon⋅s⁻¹
2²3⁻¹5 = 6.666666666666666 [s⁻¹gon] MetricGradian

julia> rpm(MetricDegree) # deg⋅s⁻¹
2⋅3 = 6.0 [s⁻¹deg] MetricDegree

julia> rpm(MetricArcminute) # amin⋅s⁻¹
2³3²5 = 360.0 [s⁻¹amin] MetricArcminute

julia> rpm(MetricArcsecond) # asec⋅s⁻¹
2⁵3³5² = 21600.0 [s⁻¹asec] MetricArcsecond

julia> rpm(MPH) # rad⋅h⁻¹
τ⋅2²3⋅5 = 376.99111843077515 [h⁻¹] MPH

julia> rpm(IAU) # rad⋅D⁻¹
τ⋅2⁵3²5 = 9047.786842338604 [D⁻¹] IAU☉
MeasureSystems.kayserConstant
kayser(U::UnitSystem) = wavenumber(𝟏,U,Gauss)
wavenumber : [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹⋅(R∞⁻¹α²τ⁻¹2⋅5² = 3.8615926796(12) × 10⁻¹¹) [ħ⁻¹𝘤⋅mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Metric unit of wavenumber or curvature (m⁻¹ or ft⁻¹).

julia> kayser(Metric) # m⁻¹
2²5² = 100.0 [m⁻¹] Metric

julia> kayser(CGS) # cm⁻¹
𝟏 = 1.0 [cm⁻¹] Gauss

julia> kayser(English) # ft⁻¹
ft⋅2²5² = 30.48 [ft⁻¹] English
MeasureSystems.diopterConstant
diopter(U::UnitSystem) = angularwavenumber(𝟏,U,Metric)
angularwavenumber : [L⁻¹A], [L⁻¹], [L⁻¹], [L⁻¹], [L⁻¹]
L⁻¹A⋅(R∞⁻¹α²τ⁻¹2⁻¹ = 3.8615926796(12) × 10⁻¹³) [ħ⁻¹𝘤⋅mₑ⋅g₀⁻¹] Unified

Metric unit of angularwavenumber or curvature (m⁻¹ or ft⁻¹).

julia> diopter(Metric) # m⁻¹
𝟏 = 1.0 [m⁻¹] Metric

julia> diopter(CGS) # cm⁻¹
2⁻²5⁻² = 0.010000000000000002 [cm⁻¹] Gauss

julia> diopter(English) # ft⁻¹
ft = 0.3048 [ft⁻¹rad] English
MeasureSystems.rayleighConstant
rayleigh(U::UnitSystem) = photonirradiance(𝟏𝟎^10,U,Metric)
photonirradiance : [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T], [L⁻²T]
L⁻²T⋅(𝘤⋅R∞⁻¹α²τ⁻¹2⁹5¹⁰ = 1.15767636121(35) × 10⁶) [ħ⁻¹mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Common unit of photonirradiance (Hz⋅m⁻²).

julia> rayleigh(Metric) # Hz⋅m⁻²
2¹⁰5¹⁰ = 1.0×10¹⁰ [Hz⋅m⁻²] Metric

julia> rayleigh(CGS) # Hz⋅cm⁻²
2⁶5⁶ = 1.0×10⁶ [Hz⋅m⁻²] Gauss

julia> rayleigh(English) # Hz⋅ft⁻²
ft²2¹⁰5¹⁰ = 9.290304000000001×10⁸ [ft⁻²s] English
MeasureSystems.flickConstant
flick(U::UnitSystem) = radiance(𝟏𝟎^10,U,Metric)/length(𝟏,U,Metric)
nonstandard : [FL⁻²T⁻¹A⁻²], [FL⁻²T⁻¹], [ML⁻¹T⁻³], [ML⁻¹T⁻³], [ML⁻¹T⁻³]
FL⁻²T⁻¹A⁻²⋅(𝘩⁻¹𝘤⁻²R∞⁻⁵α¹⁰τ⁻⁴2⁵5¹⁰ = 9.059719376(14) × 10⁻³⁶) [ħ⁻⁴𝘤⁷mₑ⁵ϕ⁻⁶g₀⁻⁵] Unified

Lockheed Martin unit of radiance per length (W⋅m⁻³⋅rad⁻²).

julia> flick(Metric) # W⋅m⁻³
2¹⁰5¹⁰ = 1.0×10¹⁰ [W⋅m⁻³] Metric

julia> flick(CGS) # erg⋅s⁻¹⋅mL⁻¹
2¹¹5¹¹ = 1.0×10¹¹ [erg⋅s⁻¹mL⁻¹] Gauss

julia> flick(MetricSpatian) # W⋅m⁻³⋅ς⁻²
τ⋅2¹¹5¹⁰ = 1.2566370614359172×10¹¹ [W⋅m⁻³⋅ς⁻²] MetricSpatian
MeasureSystems.gforceConstant
gforce(U::UnitSystem) = specificforce(𝟏,U,English)
specificforce : [FM⁻¹], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
FM⁻¹⋅(𝘤⁻²R∞⁻¹α²g₀⋅τ⁻¹2⁻¹ = 4.2135265250(13) × 10⁻²⁹) [ħ⁻¹𝘤³mₑ⋅ϕ⁻¹g₀⁻²] Unified

Standard gravity specificforce g₀ at geodetic reference latitude (m⋅s⁻² or ft⋅s⁻²).

julia> gforce(CGS) # gal
g₀⋅2²5² = 980.665 [gal] Gauss

julia> gforce(British) # ft⋅s⁻²
g₀⋅ft⁻¹ = 32.17404855643044 [ft⋅s⁻²] British

julia> gforce(English) # lbf⋅lbm⁻¹
𝟏 = 1.0 [g₀] English
MeasureSystems.galileoConstant
galileo(U::UnitSystem) = specificforce(𝟏,U,Gauss)
specificforce : [FM⁻¹], [LT⁻²], [LT⁻²], [LT⁻²], [LT⁻²]
FM⁻¹⋅(𝘤⁻²R∞⁻¹α²τ⁻¹2⁻³5⁻² = 4.2966013114(13) × 10⁻³²) [ħ⁻¹𝘤³mₑ⋅ϕ⁻¹g₀⁻²] Unified

Metric unit of specificforce used in gravimetry (m⋅s⁻² or ft⋅s⁻²).

julia> galileo(Metric) # m⋅s⁻²
2⁻²5⁻² = 0.010000000000000002 [m⋅s⁻²] Metric

julia> galileo(CGS) # gal
𝟏 = 1.0 [gal] Gauss

julia> galileo(English) # lbf⋅lbm⁻¹
g₀⁻¹2⁻²5⁻² = 0.0010197162129779284 [g₀] English
MeasureSystems.eotvosConstant
eotvos(U::UnitSystem) = specificforce(nano,U,Gauss)/length(𝟏,U,Gauss)
nonstandard : [FM⁻¹L⁻¹], [T⁻²], [T⁻²], [T⁻²], [T⁻²]
FM⁻¹L⁻¹⋅(𝘤⁻²R∞⁻²α⁴τ⁻²2⁻¹¹5⁻⁹ = 1.6591724171(10) × 10⁻⁵¹) [ħ⁻²𝘤⁴mₑ²ϕ⁻²g₀⁻³] Unified

Metric unit of specificforce per length used in gravimetry (s⁻² or gal⋅cm⁻¹).

julia> eotvos(Metric) # s⁻²
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [Hz⋅s⁻¹] Metric

julia> eotvos(CGS) # gal⋅cm⁻¹
2⁻⁹5⁻⁹ = 1.0×10⁻⁹ [gal⋅cm⁻¹] Gauss

julia> eotvos(English) # lbf⋅lbm⁻¹ft⁻¹
g₀⁻¹ft⋅2⁻⁹5⁻⁹ = 3.108095017156726×10⁻¹¹ [lbf⋅lbm⁻¹ft⁻¹] English
MeasureSystems.darcyConstant
darcy(U::UnitSystem) = area(milli/atm,U,Gauss)
area : [L²], [L²], [L²], [L²], [L²]
L²⋅(R∞²α⁻⁴atm⁻¹τ²2⁻⁵5⁻⁷ = 6.6183611583(41) × 10¹²) [ħ²𝘤⁻²mₑ⁻²ϕ²g₀²] Unified

Metric unit of permeability (m² or ft²).

julia> darcy(Metric) # m²
atm⁻¹2⁻⁷5⁻⁷ = 9.86923266716013×10⁻¹³ [m²] Metric

julia> darcy(CGS) # cm²
atm⁻¹2⁻³5⁻³ = 9.86923266716013×10⁻⁹ [cm²] Gauss

julia> darcy(English) # ft²
ft⁻²atm⁻¹2⁻⁷5⁻⁷ = 1.0623153631097677×10⁻¹¹ [ft²] English
MeasureSystems.poiseConstant
poise(U::UnitSystem) = viscosity(𝟏,U,Gauss)
viscosity : [FL⁻²T], [FL⁻²T], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹]
FL⁻²T⋅(𝘩⁻¹R∞⁻³α⁶τ⁻²2⁻⁴5⁻¹ = 5.4603845163(50) × 10⁻⁵) [ħ⁻²𝘤³mₑ³ϕ⁻²g₀⁻³] Unified

Metric unit of viscosity (kg⋅m⁻¹⋅s⁻¹ or lb⋅s⋅ft⁻²).

julia> poise(Metric) # kg⋅m⁻¹⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [Pa⋅s] Metric

julia> poise(CGS) # g⋅cm⁻¹⋅s⁻¹
𝟏 = 1.0 [P] Gauss

julia> poise(English) # lb⋅s⋅ft⁻²
g₀⁻¹ft²lb⁻¹2⁻¹5⁻¹ = 0.002088543423315013 [lbf⋅ft⁻²s] English
MeasureSystems.reynConstant
reyn(U::UnitSystem) = viscosity(𝟏,U,IPS)
viscosity : [FL⁻²T], [FL⁻²T], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹], [ML⁻¹T⁻¹]
FL⁻²T⋅(𝘩⁻¹R∞⁻³α⁶g₀⋅ft⁻²lb⋅τ⁻²2⋅3² = 3.7648025968(35)) [ħ⁻²𝘤³mₑ³ϕ⁻²g₀⁻³] Unified

IPS unit of viscosity named after Reynolds (kg⋅m⁻¹⋅s⁻¹ or lb⋅s⋅ft⁻²).

julia> reyn(Metric) # kg⋅m⁻¹⋅s⁻¹
g₀⋅ft⁻²lb⋅2⁴3² = 6894.75729316836 [Pa⋅s] Metric

julia> reyn(CGS) # g⋅cm⁻¹⋅s⁻¹
g₀⋅ft⁻²lb⋅2⁵3²5 = 68947.5729316836 [P] Gauss

julia> reyn(English) # lb⋅s⋅ft⁻²
2⁴3² = 144.0 [lbf⋅ft⁻²s] English
MeasureSystems.stokesConstant
stokes(U::UnitSystem) = diffusivity(𝟏,U,Gauss)
diffusivity : [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹], [L²T⁻¹]
L²T⁻¹⋅(𝘤⁻¹R∞⋅α⁻²τ⋅2⁻³5⁻⁴ = 0.86379927371(26)) [ħ⋅mₑ⁻¹ϕ⋅g₀] Unified

Metric unit of diffusivity (m²⋅s⁻¹ or ft²⋅s⁻¹).

julia> stokes(Metric) # m²⋅s⁻¹
2⁻⁴5⁻⁴ = 0.0001 [m²s⁻¹] Metric

julia> stokes(CGS) # cm²⋅s⁻¹
𝟏 = 1.0 [St] Gauss

julia> stokes(English) # ft²⋅s⁻¹
ft⁻²2⁻⁴5⁻⁴ = 0.0010763910416709721 [ft²s⁻¹] English
MeasureSystems.raylConstant
rayl(U::UnitSystem) = specificimpedance(𝟏,U,Metric)
specificimpedance : [FL⁻³T], [FL⁻³T], [ML⁻²T⁻¹], [ML⁻²T⁻¹], [ML⁻²T⁻¹]
FL⁻³T⋅(𝘩⁻¹R∞⁻⁴α⁸τ⁻³2⁻⁴ = 2.1085780876(26) × 10⁻¹⁶) [ħ⁻³𝘤⁴mₑ⁴ϕ⁻³g₀⁻⁴] Unified

Metric unit of specificimpedance (kg⋅m⁻²⋅s⁻¹ or lb⋅s⋅ft⁻³).

julia> rayl(Metric) # kg⋅m⁻²⋅s⁻¹
𝟏 = 1.0 [kg⋅m⁻²s⁻¹] Metric

julia> rayl(CGS) # g⋅cm⁻²⋅s⁻¹
2⁻¹5⁻¹ = 0.1 [g⋅cm⁻²s⁻¹] Gauss

julia> rayl(English) # lb⋅s⋅ft⁻³
g₀⁻¹ft³lb⁻¹ = 0.00636588035426416 [lbf⋅ft⁻³s] English
MeasureSystems.mpgeConstant
mpge(U::UnitSystem) = mile(U)/gasgallon(U)
nonstandard : [F⁻¹], [F⁻¹], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²], [M⁻¹L⁻¹T²]
F⁻¹⋅(𝘩⋅𝘤⋅R∞²α⁻⁴ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²τ⋅2⁻²5⁻⁷11⋅19⁻¹43 = 2.8368673134(17) × 10⁻⁶) [ħ⋅𝘤⁻³mₑ⁻²ϕ⋅g₀²] Unified

Equivalent mile per gasgallon reference unit of length per energy (N⁻¹ or lb⁻¹).

julia> mpge(Metric) # N⁻¹
ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁴5⁻⁷11⋅19⁻¹43 = 1.3380584481180184×10⁻⁵ [N⁻¹] Metric

julia> mpge(CGS) # dyn⁻¹
ft⋅lb⁻¹Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁹5⁻¹²11⋅19⁻¹43 = 1.3380584481180186×10⁻¹⁰ [dyn⁻¹] Gauss

julia> mpge(English) # lb⁻¹
g₀⋅ft⋅Ωᵢₜ⋅Vᵢₜ⁻²2⁻⁴5⁻⁷11⋅19⁻¹43 = 5.95198051140049×10⁻⁵ [lbf⁻¹] English
MeasureSystems.langleyConstant
langley(U::UnitSystem) = calorie(U)/(centi*meter(U))^2
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶Ωᵢₜ⁻¹Vᵢₜ²τ⁻²2³3²5⁵43⁻¹ = 7.6256740434(70) × 10⁻⁸) [ħ⁻²𝘤⁴mₑ³ϕ⁻²g₀⁻³] Unified

Solar radiation unit (kg⋅s⁻² or lb⋅ft⁻¹).

julia> langley(Metric) # kg⋅s⁻²
Ωᵢₜ⁻¹Vᵢₜ²2⁶3²5⁵43⁻¹ = 41867.37323211056 [N⋅m⁻¹] Metric

julia> langley(CGS) # g⋅s⁻²
Ωᵢₜ⁻¹Vᵢₜ²2⁹3²5⁸43⁻¹ = 4.186737323211056×10⁷ [dyn⋅cm⁻¹] Gauss

julia> langley(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹Ωᵢₜ⁻¹Vᵢₜ²2⁶3²5⁵43⁻¹ = 2868.8263456495906 [lbf⋅ft⁻¹] English
MeasureSystems.janskyConstant
jansky(U::UnitSystem) = fluence(𝟏𝟎^-26,U,Metric)
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶τ⁻²2⁻²⁹5⁻²⁶ = 1.8213882206(17) × 10⁻³⁸) [ħ⁻²𝘤⁴mₑ³ϕ⁻²g₀⁻³] Unified

Reference unit of spectral irradiance (kg⋅s⁻² or lb⋅ft⁻¹).

julia> jansky(Metric) # kg⋅s⁻²
2⁻²⁶5⁻²⁶ = 1.0×10⁻²⁶ [N⋅m⁻¹] Metric

julia> jansky(CGS) # g⋅s⁻²
2⁻²³5⁻²³ = 1.0×10⁻²³ [dyn⋅cm⁻¹] Gauss

julia> jansky(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻²⁶5⁻²⁶ = 6.852176585679177×10⁻²⁸ [lbf⋅ft⁻¹] English
MeasureSystems.solarfluxConstant
solarflux(U::UnitSystem) = hecto^2*jansky(U)
fluence : [FL⁻¹], [FL⁻¹], [MT⁻²], [MT⁻²], [MT⁻²]
FL⁻¹⋅(𝘩⁻¹𝘤⁻¹R∞⁻³α⁶τ⁻²2⁻²⁵5⁻²² = 1.8213882206(17) × 10⁻³⁴) [ħ⁻²𝘤⁴mₑ³ϕ⁻²g₀⁻³] Unified

Reference unit of spectral irradiance (kg⋅s⁻² or lb⋅ft⁻¹).

julia> solarflux(Metric) # kg⋅s⁻²
2⁻²²5⁻²² = 9.999999999999999×10⁻²³ [N⋅m⁻¹] Metric

julia> solarflux(CGS) # g⋅s⁻²
2⁻¹⁹5⁻¹⁹ = 1.0×10⁻¹⁹ [dyn⋅cm⁻¹] Gauss

julia> solarflux(English) # lb⋅ft⁻¹
g₀⁻¹ft⋅lb⁻¹2⁻²²5⁻²² = 6.852176585679175×10⁻²⁴ [lbf⋅ft⁻¹] English
MeasureSystems.curieConstant
curie(U::UnitSystem) = frequency(𝟏,U,Metric)
frequency : [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹], [T⁻¹]
T⁻¹⋅(𝘤⁻¹R∞⁻¹α²τ⁻¹2⁸5⁹⋅37 = 4.7659280723(15) × 10⁻¹¹) [ħ⁻¹𝘤²mₑ⋅ϕ⁻¹g₀⁻¹] Unified

Reference unit of radioactivity (Bq or s⁻¹).

julia> curie(Metric) # Bq
2⁹5⁹⋅37 = 3.7×10¹⁰ [Hz] Metric

julia> curie(IAU) # D⁻¹
2¹⁶3³5¹¹⋅37 = 3.1968×10¹⁵ [D⁻¹] IAU☉
MeasureSystems.grayConstant
gray(U::UnitSystem) = energy(𝟏,U,Metric)/mass(𝟏,U,Metric)
specificenergy : [FM⁻¹L], [L²T⁻²], [L²T⁻²], [L²T⁻²], [L²T⁻²]
FM⁻¹L⋅(𝘤⁻² = 1.1126500560536183×10⁻¹⁷) [𝘤²g₀⁻¹] Unified

Metric unit of radioactivity (Gy or m²⋅s⁻²).

julia> gray(Metric) # Gy
𝟏 = 1.0 [J⋅kg⁻¹] Metric
MeasureSystems.roentgenConstant
roentgen(U::UnitSystem) = chargedensity(𝟏,U,ESU)/density(Constant(1.293),U,Metric)
exposure : [M⁻¹Q], [F⁻¹LT⁻²Q], [M⁻¹Q], [M⁻¹ᐟ²L¹ᐟ²], [M⁻¹ᐟ²L³ᐟ²T⁻¹]
M⁻¹Q⋅(𝘩¹ᐟ²𝘤⁻³ᐟ²R∞⋅α⁻²τ⋅2³5³ᐟ²/1.293 = 4.4416769735(14) × 10⁻¹⁶) [ħ¹ᐟ²𝘤⁻¹ᐟ²μ₀⁻¹ᐟ²mₑ⁻¹ϕ¹ᐟ²λ⁻¹ᐟ²αL⁻¹] Unified

Legacy unit of ionisation exposure (C⋅kg⁻¹ or C⋅lb⁻¹).

julia> roentgen(Metric) # C⋅kg⁻¹
𝘤⁻¹2⁵5⁵/1.293 = 0.0002579768717696458 [kg⁻¹C] Metric

julia> roentgen(English) # C⋅lb⁻¹
𝘤⁻¹lb⋅2⁵5⁵/1.293 = 0.00011701634067117975 [lbm⁻¹C] English

Units Index