| Unified | Metric | Product |
---|
angle | $A$ | $\mathbb{1}$ | $[\phi]$ |
solid angle | $A^{2}$ | $\mathbb{1}$ | $[\phi^{2}]$ |
time | $T$ | $T$ | $[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
angular time | $TA^{-1}$ | $T$ | $[\hbar\cdot \text{c}^{-2}\text{m}_\text{e}^{-1}\text{g}_0]$ |
length | $L$ | $L$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
angular length | $LA^{-1}$ | $L$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0]$ |
area | $L^{2}$ | $L^{2}$ | $[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}]$ |
angular area | $L^{2}A^{-2}$ | $L^{2}$ | $[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\text{g}_0^{2}]$ |
volume | $L^{3}$ | $L^{3}$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
wavenumber | $L^{-1}$ | $L^{-1}$ | $[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
angular wavenumber | $L^{-1}A$ | $L^{-1}$ | $[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
fuel efficiency | $L^{-2}$ | $L^{-2}$ | $[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}]$ |
number density | $L^{-3}$ | $L^{-3}$ | $[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}]$ |
frequency | $T^{-1}$ | $T^{-1}$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
angular frequency | $T^{-1}A$ | $T^{-1}$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
frequency drift | $T^{-2}$ | $T^{-2}$ | $[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}]$ |
stagnance | $L^{-1}T$ | $L^{-1}T$ | $[\text{c}^{-1}]$ |
speed | $LT^{-1}$ | $LT^{-1}$ | $[\text{c}]$ |
acceleration | $LT^{-2}$ | $LT^{-2}$ | $[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
jerk | $LT^{-3}$ | $LT^{-3}$ | $[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}]$ |
snap | $LT^{-4}$ | $LT^{-4}$ | $[\hbar^{-3}\text{c}^{7}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}]$ |
crackle | $LT^{-5}$ | $LT^{-5}$ | $[\hbar^{-4}\text{c}^{9}\text{m}_\text{e}^{4}\phi^{-4}\text{g}_0^{-4}]$ |
pop | $LT^{-6}$ | $LT^{-6}$ | $[\hbar^{-5}\text{c}^{11}\text{m}_\text{e}^{5}\phi^{-5}\text{g}_0^{-5}]$ |
volume flow | $L^{3}T^{-1}$ | $L^{3}T^{-1}$ | $[\hbar^{2}\text{c}^{-1}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}]$ |
etendue | $L^{2}A^{2}$ | $L^{2}$ | $[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{4}\text{g}_0^{2}]$ |
photon intensity | $T^{-1}A^{-2}$ | $T^{-1}$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-3}\text{g}_0^{-1}]$ |
photon irradiance | $L^{-2}T$ | $L^{-2}T$ | $[\hbar^{-1}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
photon radiance | $L^{-2}TA^{-2}$ | $L^{-2}T$ | $[\hbar^{-1}\text{m}_\text{e}\cdot \phi^{-3}\text{g}_0^{-1}]$ |
| Unified | Metric | British | Product |
---|
inertia | $FL^{-1}T^{2}$ | $M$ | $FL^{-1}T^{2}$ | $[\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
mass | $M$ | $M$ | $FL^{-1}T^{2}$ | $[\text{m}_\text{e}]$ |
mass flow | $MT^{-1}$ | $MT^{-1}$ | $FL^{-1}T$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-1}]$ |
linear density | $ML^{-1}$ | $ML^{-1}$ | $FL^{-2}T^{2}$ | $[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-1}]$ |
area density | $ML^{-2}$ | $ML^{-2}$ | $FL^{-3}T^{2}$ | $[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-2}]$ |
density | $ML^{-3}$ | $ML^{-3}$ | $FL^{-4}T^{2}$ | $[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-3}]$ |
specific weight | $FL^{-3}$ | $ML^{-2}T^{-2}$ | $FL^{-3}$ | $[\hbar^{-4}\text{c}^{6}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-5}]$ |
specific volume | $M^{-1}L^{3}$ | $M^{-1}L^{3}$ | $F^{-1}L^{4}T^{-2}$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\phi^{3}\text{g}_0^{3}]$ |
force | $F$ | $MLT^{-2}$ | $F$ | $[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
specific force | $FM^{-1}$ | $LT^{-2}$ | $LT^{-2}$ | $[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}]$ |
gravity force | $F^{-1}MLT^{-2}$ | $\mathbb{1}$ | $\mathbb{1}$ | $[\text{g}_0]$ |
pressure | $FL^{-2}$ | $ML^{-1}T^{-2}$ | $FL^{-2}$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
compressibility | $F^{-1}L^{2}$ | $M^{-1}LT^{2}$ | $F^{-1}L^{2}$ | $[\hbar^{3}\text{c}^{-5}\text{m}_\text{e}^{-4}\phi^{3}\text{g}_0^{4}]$ |
viscosity | $FL^{-2}T$ | $ML^{-1}T^{-1}$ | $FL^{-2}T$ | $[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
diffusivity | $L^{2}T^{-1}$ | $L^{2}T^{-1}$ | $L^{2}T^{-1}$ | $[\hbar\cdot \text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
rotational inertia | $ML^{2}$ | $ML^{2}$ | $FLT^{2}$ | $[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-1}\phi^{2}\text{g}_0^{2}]$ |
impulse | $FT$ | $MLT^{-1}$ | $FT$ | $[\text{c}\cdot \text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
momentum | $MLT^{-1}$ | $MLT^{-1}$ | $FT$ | $[\text{c}\cdot \text{m}_\text{e}]$ |
angular momentum | $FLTA^{-1}$ | $ML^{2}T^{-1}$ | $FLT$ | $[\hbar]$ |
yank | $MLT^{-3}$ | $MLT^{-3}$ | $FT^{-1}$ | $[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-2}]$ |
energy | $FL$ | $ML^{2}T^{-2}$ | $FL$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
specific energy | $FM^{-1}L$ | $L^{2}T^{-2}$ | $L^{2}T^{-2}$ | $[\text{c}^{2}\text{g}_0^{-1}]$ |
action | $FLT$ | $ML^{2}T^{-1}$ | $FLT$ | $[\hbar\cdot \phi]$ |
fluence | $FL^{-1}$ | $MT^{-2}$ | $FL^{-1}$ | $[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
power | $FLT^{-1}$ | $ML^{2}T^{-3}$ | $FLT^{-1}$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
power density | $FL^{-2}T^{-1}$ | $ML^{-1}T^{-3}$ | $FL^{-2}T^{-1}$ | $[\hbar^{-4}\text{c}^{7}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-5}]$ |
irradiance | $FL^{-1}T^{-1}$ | $MT^{-3}$ | $FL^{-1}T^{-1}$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
radiance | $FL^{-1}T^{-1}A^{-2}$ | $MT^{-3}$ | $FL^{-1}T^{-1}$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\phi^{-5}\text{g}_0^{-4}]$ |
radiant intensity | $FLT^{-1}A^{-2}$ | $ML^{2}T^{-3}$ | $FLT^{-1}$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-3}\text{g}_0^{-2}]$ |
spectral flux | $FT^{-1}$ | $MLT^{-3}$ | $FT^{-1}$ | $[\hbar^{-2}\text{c}^{5}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
spectral exposure | $FL^{-1}T$ | $MT^{-1}$ | $FL^{-1}T$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
sound exposure | $F^{2}L^{-4}T$ | $M^{2}L^{-2}T^{-3}$ | $F^{2}L^{-4}T$ | $[\hbar^{-5}\text{c}^{8}\text{m}_\text{e}^{7}\phi^{-5}\text{g}_0^{-7}]$ |
impedance | $FL^{-5}T$ | $ML^{-4}T^{-1}$ | $FL^{-5}T$ | $[\hbar^{-5}\text{c}^{6}\text{m}_\text{e}^{6}\phi^{-5}\text{g}_0^{-6}]$ |
specific impedance | $FL^{-3}T$ | $ML^{-2}T^{-1}$ | $FL^{-3}T$ | $[\hbar^{-3}\text{c}^{4}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
admittance | $F^{-1}L^{5}T^{-1}$ | $M^{-1}L^{4}T$ | $F^{-1}L^{5}T^{-1}$ | $[\hbar^{5}\text{c}^{-6}\text{m}_\text{e}^{-6}\phi^{5}\text{g}_0^{6}]$ |
compliance | $M^{-1}T^{2}$ | $M^{-1}T^{2}$ | $F^{-1}L$ | $[\hbar^{2}\text{c}^{-4}\text{m}_\text{e}^{-3}\phi^{2}\text{g}_0^{2}]$ |
inertance | $ML^{-4}$ | $ML^{-4}$ | $FL^{-5}T^{2}$ | $[\hbar^{-4}\text{c}^{4}\text{m}_\text{e}^{5}\phi^{-4}\text{g}_0^{-4}]$ |
| Unified | EMU | ESU | Product |
---|
charge | $Q$ | $M^{1/2}L^{1/2}$ | $M^{1/2}L^{3/2}T^{-1}$ | $[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}]$ |
charge density | $L^{-3}Q$ | $M^{1/2}L^{-5/2}$ | $M^{1/2}L^{-3/2}T^{-1}$ | $[\hbar^{-5/2}\text{c}^{5/2}\mu_0^{-1/2}\text{m}_\text{e}^{3}\phi^{-5/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-3}]$ |
linear charge density | $L^{-1}Q$ | $M^{1/2}L^{-1/2}$ | $M^{1/2}L^{1/2}T^{-1}$ | $[\hbar^{-1/2}\text{c}^{1/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}]$ |
exposure | $M^{-1}Q$ | $M^{-1/2}L^{1/2}$ | $M^{-1/2}L^{3/2}T^{-1}$ | $[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}]$ |
mobility | $FL^{3}T^{-1}Q^{-1}$ | $M^{1/2}L^{7/2}T^{-3}$ | $M^{1/2}L^{5/2}T^{-2}$ | $[\hbar^{1/2}\text{c}^{5/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\alpha_\text{L}]$ |
current | $T^{-1}Q$ | $M^{1/2}L^{1/2}T^{-1}$ | $M^{1/2}L^{3/2}T^{-2}$ | $[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-1}]$ |
current density | $L^{-2}T^{-1}Q$ | $M^{1/2}L^{-3/2}T^{-1}$ | $M^{1/2}L^{-1/2}T^{-2}$ | $[\hbar^{-5/2}\text{c}^{7/2}\mu_0^{-1/2}\text{m}_\text{e}^{3}\phi^{-5/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0^{-3}]$ |
resistance | $FLTQ^{-2}$ | $LT^{-1}$ | $L^{-1}T$ | $[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}]$ |
conductance | $F^{-1}L^{-1}T^{-1}Q^{2}$ | $L^{-1}T$ | $LT^{-1}$ | $[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}]$ |
resistivity | $FL^{2}TQ^{-2}$ | $L^{2}T^{-1}$ | $T$ | $[\hbar\cdot \mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot \alpha_\text{L}^{2}\text{g}_0]$ |
conductivity | $F^{-1}L^{-2}T^{-1}Q^{2}$ | $L^{-2}T$ | $T^{-1}$ | $[\hbar^{-1}\mu_0^{-1}\text{m}_\text{e}\cdot \phi^{-1}\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0^{-1}]$ |
capacitance | $F^{-1}L^{-1}Q^{2}$ | $L^{-1}T^{2}$ | $L$ | $[\hbar\cdot \text{c}^{-3}\mu_0^{-1}\text{m}_\text{e}^{-1}\phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0]$ |
inductance | $FLT^{2}Q^{-2}$ | $L$ | $L^{-1}T^{2}$ | $[\hbar\cdot \text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \lambda\cdot \alpha_\text{L}^{2}\text{g}_0]$ |
reluctance | $F^{-1}L^{-1}T^{-2}Q^{2}RC^{-2}$ | $L^{-1}$ | $LT^{-2}$ | $[\hbar^{-1}\text{c}\cdot \mu_0^{-1}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
permeance | $FLT^{2}Q^{-2}R^{-1}C^{2}$ | $L$ | $L^{-1}T^{2}$ | $[\hbar\cdot \text{c}^{-1}\mu_0\cdot \text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
permittivity | $F^{-1}L^{-2}Q^{2}R$ | $L^{-2}T^{2}$ | $\mathbb{1}$ | $[\text{c}^{-2}\mu_0^{-1}\alpha_\text{L}^{-2}]$ |
permeability | $FT^{2}Q^{-2}R^{-1}C^{2}$ | $\mathbb{1}$ | $L^{-2}T^{2}$ | $[\mu_0]$ |
susceptibility | $R^{-1}$ | $\mathbb{1}$ | $\mathbb{1}$ | $[\lambda^{-1}]$ |
specific susceptibility | $M^{-1}L^{3}A^{-1}R^{-1}$ | $M^{-1}L^{3}$ | $M^{-1}L^{3}$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\phi^{2}\lambda^{-1}\text{g}_0^{3}]$ |
demagnetizing factor | $R$ | $\mathbb{1}$ | $\mathbb{1}$ | $[\lambda]$ |
vector potential | $FTQ^{-1}C$ | $M^{1/2}L^{1/2}T^{-1}$ | $M^{1/2}L^{-1/2}$ | $[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\text{g}_0^{-1}]$ |
electric potential | $FLQ^{-1}$ | $M^{1/2}L^{3/2}T^{-2}$ | $M^{1/2}L^{1/2}T^{-1}$ | $[\hbar^{-1/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\alpha_\text{L}\cdot \text{g}_0^{-1}]$ |
magnetic potential | $T^{-1}QRC^{-1}$ | $M^{1/2}L^{1/2}T^{-1}$ | $M^{1/2}L^{3/2}T^{-2}$ | $[\hbar^{-1/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}\cdot \phi^{-1/2}\lambda^{1/2}\text{g}_0^{-1}]$ |
electric field | $FQ^{-1}$ | $M^{1/2}L^{1/2}T^{-2}$ | $M^{1/2}L^{-1/2}T^{-1}$ | $[\hbar^{-3/2}\text{c}^{7/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\alpha_\text{L}\cdot \text{g}_0^{-2}]$ |
magnetic field | $L^{-1}T^{-1}QRC^{-1}$ | $M^{1/2}L^{-1/2}T^{-1}$ | $M^{1/2}L^{1/2}T^{-2}$ | $[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}]$ |
electric flux | $FL^{2}Q^{-1}$ | $M^{1/2}L^{5/2}T^{-2}$ | $M^{1/2}L^{3/2}T^{-1}$ | $[\hbar^{1/2}\text{c}^{3/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}\alpha_\text{L}]$ |
magnetic flux | $FLTQ^{-1}C$ | $M^{1/2}L^{3/2}T^{-1}$ | $M^{1/2}L^{1/2}$ | $[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}]$ |
electric displacement | $L^{-2}QR$ | $M^{1/2}L^{-3/2}$ | $M^{1/2}L^{-1/2}T^{-1}$ | $[\hbar^{-3/2}\text{c}^{3/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\alpha_\text{L}^{-1}\text{g}_0^{-2}]$ |
magnetic flux density | $FL^{-1}TQ^{-1}C$ | $M^{1/2}L^{-1/2}T^{-1}$ | $M^{1/2}L^{-3/2}$ | $[\hbar^{-3/2}\text{c}^{5/2}\mu_0^{1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{1/2}\text{g}_0^{-2}]$ |
electric dipole moment | $LQ$ | $M^{1/2}L^{3/2}$ | $M^{1/2}L^{5/2}T^{-1}$ | $[\hbar^{3/2}\text{c}^{-3/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{3/2}\lambda^{-1/2}\alpha_\text{L}^{-1}\text{g}_0]$ |
magnetic dipole moment | $L^{2}T^{-1}QA^{-1}C^{-1}$ | $M^{1/2}L^{5/2}T^{-1}$ | $M^{1/2}L^{7/2}T^{-2}$ | $[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\text{g}_0]$ |
electric polarizability | $F^{-1}LQ^{2}$ | $LT^{2}$ | $L^{3}$ | $[\hbar^{3}\text{c}^{-5}\mu_0^{-1}\text{m}_\text{e}^{-3}\phi^{3}\lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0^{3}]$ |
magnetic polarizability | $L^{3}A^{-1}R^{-1}$ | $L^{3}$ | $L^{3}$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{2}\lambda^{-1}\text{g}_0^{3}]$ |
magnetic moment | $FL^{2}TQ^{-1}C$ | $M^{1/2}L^{5/2}T^{-1}$ | $M^{1/2}L^{3/2}$ | $[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{1/2}\text{m}_\text{e}^{-1}\phi^{3/2}\lambda^{1/2}\text{g}_0]$ |
specific magnetization | $F^{-1}ML^{-2}T^{-1}QC^{-1}$ | $M^{1/2}L^{-5/2}T$ | $M^{1/2}L^{-3/2}$ | $[\hbar^{-3/2}\text{c}^{1/2}\mu_0^{-1/2}\text{m}_\text{e}^{2}\phi^{-3/2}\lambda^{-1/2}\text{g}_0^{-1}]$ |
pole strength | $LT^{-1}QA^{-1}C^{-1}$ | $M^{1/2}L^{3/2}T^{-1}$ | $M^{1/2}L^{5/2}T^{-2}$ | $[\hbar^{1/2}\text{c}^{1/2}\mu_0^{-1/2}\phi^{-1/2}\lambda^{-1/2}]$ |
| Unified | Metric | British | Product |
---|
molar mass | $MN^{-1}$ | $MN^{-1}$ | $FL^{-1}T^{2}N^{-1}$ | $[\text{M}_\text{u}]$ |
molality | $M^{-1}N$ | $M^{-1}N$ | $F^{-1}LT^{-2}N$ | $[\text{M}_\text{u}^{-1}]$ |
molar amount | $N$ | $N$ | $N$ | $[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}]$ |
molarity | $L^{-3}N$ | $L^{-3}N$ | $L^{-3}N$ | $[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\text{M}_\text{u}^{-1}\phi^{-3}\text{g}_0^{-3}]$ |
molar volume | $L^{3}N^{-1}$ | $L^{3}N^{-1}$ | $L^{3}N^{-1}$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\text{M}_\text{u}\cdot \phi^{3}\text{g}_0^{3}]$ |
molar entropy | $FLΘ^{-1}N^{-1}$ | $ML^{2}T^{-2}Θ^{-1}N^{-1}$ | $FLΘ^{-1}N^{-1}$ | $[\text{k}_\text{B}\cdot \text{m}_\text{e}^{-1}\text{M}_\text{u}]$ |
molar energy | $FLN^{-1}$ | $ML^{2}T^{-2}N^{-1}$ | $FLN^{-1}$ | $[\text{c}^{2}\text{M}_\text{u}\cdot \text{g}_0^{-1}]$ |
molar conductivity | $F^{-1}T^{-1}Q^{2}N^{-1}$ | $M^{-1}L^{-1}TQ^{2}N^{-1}$ | $F^{-1}T^{-1}Q^{2}N^{-1}$ | $[\hbar\cdot \text{c}^{-2}\mu_0^{-1}\text{m}_\text{e}^{-2}\text{M}_\text{u}\cdot \phi\cdot \lambda^{-1}\alpha_\text{L}^{-2}\text{g}_0]$ |
molar susceptibility | $L^{3}N^{-1}A^{-1}R^{-1}$ | $L^{3}N^{-1}$ | $L^{3}N^{-1}$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-4}\text{M}_\text{u}\cdot \phi^{2}\lambda^{-1}\text{g}_0^{3}]$ |
catalysis | $T^{-1}N$ | $T^{-1}N$ | $T^{-1}N$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}]$ |
specificity | $L^{3}T^{-1}N^{-1}$ | $L^{3}T^{-1}N^{-1}$ | $L^{3}T^{-1}N^{-1}$ | $[\hbar^{2}\text{c}^{-1}\text{m}_\text{e}^{-3}\text{M}_\text{u}\cdot \phi^{2}\text{g}_0^{2}]$ |
diffusion flux | $L^{-2}TN$ | $L^{-2}TN$ | $L^{-2}TN$ | $[\hbar^{-1}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}]$ |
Name | Unified | Product |
---|
hyperfine transition | $T^{-1}(\text{c}^{-1}\Delta\nu_\text{Cs}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
light speed | $LT^{-1}$ | $[\text{c}]$ |
Planck | $FLT(\tau)$ | $[\hbar\cdot \phi]$ |
Planck reduced | $FLTA^{-1}$ | $[\hbar]$ |
electron mass | $M$ | $[\text{m}_\text{e}]$ |
molar mass | $MN^{-1}$ | $[\text{M}_\text{u}]$ |
Boltzmann | $FLΘ^{-1}$ | $[\text{k}_\text{B}]$ |
vacuum permeability | $FT^{2}Q^{-2}R^{-1}C^{2}$ | $[\mu_0]$ |
rationalization | $R$ | $[\lambda]$ |
Lorentz | $C^{-1}$ | $[\alpha_\text{L}]$ |
luminous efficacy | $F^{-1}L^{-1}TJ$ | $[\text{K}_\text{cd}]$ |
gravity | $F^{-1}MLT^{-2}$ | $[\text{g}_0]$ |
radian | $A$ | $[\phi]$ |
turn | $A(\tau)$ | $[\phi]$ |
spat | $A^{2}(\tau\cdot 2)$ | $[\phi^{2}]$ |
Dalton | $M(\mu_\text{eu}^{-1})$ | $[\text{m}_\text{e}]$ |
proton mass | $M(\mu_\text{eu}^{-1}\mu_\text{pu})$ | $[\text{m}_\text{e}]$ |
Planck mass | $M(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}\cdot 2^{-1})$ | $[\text{m}_\text{e}]$ |
Newton gravitation | $FM^{-2}L^{2}(\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}2^{2})$ | $[\hbar\cdot \text{c}\cdot \text{m}_\text{e}^{-2}\phi]$ |
Gauss gravitation | $T^{-1}A(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{k}_\text{G}\cdot 2^{-15}3^{-7}5^{-5})$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Einstein gravitation | $FM^{-2}L^{-2}T^{4}(\hbar^{2}\text{c}^{-2}\text{R}_{\infty}^{2}\alpha^{-4}\text{m}_\text{P}^{-2}\tau\cdot 2^{4})$ | $[\hbar\cdot \text{c}^{-3}\text{m}_\text{e}^{-2}\phi]$ |
Hartree | $FL(\alpha^{2})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Rydberg | $L^{-1}(\alpha^{2}\tau^{-1}2^{-1})$ | $[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
Bohr radius | $LA^{-1}(\alpha^{-1})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0]$ |
electron radius | $LA^{-1}(\alpha)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\text{g}_0]$ |
Avogadro | $N^{-1}(\mu_\text{eu})$ | $[\text{m}_\text{e}^{-1}\text{M}_\text{u}]$ |
Molar gas | $FLΘ^{-1}N^{-1}(\mu_\text{eu})$ | $[\text{k}_\text{B}\cdot \text{m}_\text{e}^{-1}\text{M}_\text{u}]$ |
Stefan-Boltzmann | $FL^{-1}T^{-1}Θ^{-4}(\tau^{2}2^{-4}3^{-1}5^{-1})$ | $[\text{k}_\text{B}^{4}\hbar^{-3}\text{c}^{-2}\phi^{-3}]$ |
radiation density | $FL^{-2}Θ^{-4}(\tau^{2}2^{-2}3^{-1}5^{-1})$ | $[\text{k}_\text{B}^{4}\hbar^{-3}\text{c}^{-3}\phi^{-3}]$ |
vacuum permittivity | $F^{-1}L^{-2}Q^{2}R$ | $[\text{c}^{-2}\mu_0^{-1}\alpha_\text{L}^{-2}]$ |
electrostatic | $FL^{2}Q^{-2}(\tau^{-1}2^{-1})$ | $[\text{c}^{2}\mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}]$ |
magnetostatic | $FT^{2}Q^{-2}(\tau^{-1}2^{-1})$ | $[\mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}]$ |
Biot-Savart | $FT^{2}Q^{-2}C(\tau^{-1}2^{-1})$ | $[\mu_0\cdot \lambda\cdot \alpha_\text{L}]$ |
elementary charge | $Q(\alpha^{1/2}\tau^{1/2}2^{1/2})$ | $[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}]$ |
Faraday | $QN^{-1}(\alpha^{1/2}\mu_\text{eu}\cdot \tau^{1/2}2^{1/2})$ | $[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\text{M}_\text{u}\cdot \phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}]$ |
vacuum impedance | $FLTQ^{-2}$ | $[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}]$ |
conductance quantum | $F^{-1}L^{-1}T^{-1}Q^{2}(\alpha\cdot 2^{2})$ | $[\text{c}^{-1}\mu_0^{-1}\lambda^{-1}\alpha_\text{L}^{-2}]$ |
Klitzing | $FLTQ^{-2}(\alpha^{-1}2^{-1})$ | $[\text{c}\cdot \mu_0\cdot \lambda\cdot \alpha_\text{L}^{2}]$ |
Josephson | $F^{-1}L^{-1}T^{-1}QC^{-1}(\alpha^{1/2}\tau^{-1/2}2^{3/2})$ | $[\hbar^{-1/2}\text{c}^{-1/2}\mu_0^{-1/2}\phi^{-1/2}\lambda^{-1/2}]$ |
magnetic flux quantum | $FLTQ^{-1}C(\alpha^{-1/2}\tau^{1/2}2^{-3/2})$ | $[\hbar^{1/2}\text{c}^{1/2}\mu_0^{1/2}\phi^{1/2}\lambda^{1/2}]$ |
magneton | $FM^{-1}LTQA^{-1}C^{-1}(\alpha^{1/2}\tau^{1/2}2^{-1/2})$ | $[\hbar^{3/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}]$ |
Loschmidt | $L^{-3}(\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3})$ | $[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-3}\text{g}_0^{-3}]$ |
mechanical heat | $FLΘ^{-1}N^{-1}(\text{k}_\text{B}^{-1}\text{N}_\text{A}^{-1}\mu_\text{eu}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{2}3^{2}5\cdot 43^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Wien wavelength | ```` | $[\text{k}_\text{B}^{-1}\hbar\cdot \text{c}\cdot \phi]$ |
Wien frequency | ```` | $[\text{k}_\text{B}\cdot \hbar^{-1}\phi^{-1}]$ |
Eddington | $M(\hbar^{-2}\text{c}^{3}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_{\Lambda}^{-1/2}\text{H}_0^{-1}\text{au}\cdot \text{m}_\text{P}^{2}\tau^{-1/2}2^{8}3^{7/2}5^{6})$ | $[\text{m}_\text{e}]$ |
solar mass | $M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{au}^{3}\text{k}_\text{G}^{2}\text{m}_\text{P}^{2}\tau^{3}2^{-29}3^{-14}5^{-10})$ | $[\text{m}_\text{e}]$ |
Jupiter mass | $M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}^{2}\text{GM}_\text{J}\cdot \tau\cdot 2^{-1})$ | $[\text{m}_\text{e}]$ |
Earth mass | $M(\hbar^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{m}_\text{P}^{2}\text{GM}_\text{E}\cdot \tau\cdot 2^{-1})$ | $[\text{m}_\text{e}]$ |
g-force | $FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \tau^{-1}2^{-1})$ | $[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}]$ |
Earth radius | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau\cdot 2)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
great circle | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
nautical mile | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-4}3^{-3}5^{-2})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
Hubble | $T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{H}_0\cdot \text{au}^{-1}2^{-11}3^{-4}5^{-6})$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
cosmological | $L^{-2}(\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\Omega_{\Lambda}\cdot \text{H}_0^{2}\text{au}^{-2}2^{-22}3^{-7}5^{-12})$ | $[\hbar^{-2}\text{c}^{2}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-2}]$ |
Name | Unified | Product |
---|
angstrom | $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{-9}5^{-10})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
inch | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2^{-1}3^{-1})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
foot | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
survey foot | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}_\text{US}\cdot \tau\cdot 2)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
yard | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2\cdot 3)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
meter | $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
Earth meter | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-8}5^{-7})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
mile | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2^{6}3\cdot 5\cdot 11)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
statute mile | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}_\text{US}\cdot \tau\cdot 2^{6}3\cdot 5\cdot 11)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
meridian mile | $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{5}3^{-3}5^{5})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
admiralty mile | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{ft}\cdot \tau\cdot 2^{7}5\cdot 19)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
nautical mile | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{g}_0^{-1/2}\text{GM}_\text{E}^{1/2}\tau^{2}2^{-4}3^{-3}5^{-2})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
lunar distance | $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{4}3^{3}5^{3}14237)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
astronomical unit | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{au}\cdot \tau\cdot 2)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
Jupiter distance | $L(\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{7}3\cdot 5^{6}259493)$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
light-year | $L(\text{c}\cdot \text{R}_{\infty}\cdot \alpha^{-2}\text{a}_\text{j}\cdot \tau\cdot 2^{8}3^{3}5^{2})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
parsec | $L(\text{R}_{\infty}\cdot \alpha^{-2}\text{au}\cdot 2^{8}3^{4}5^{3})$ | $[\hbar\cdot \text{c}^{-1}\text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
Name | Unified | Product |
---|
liter | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}5^{-3})$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
gallon | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-3}3^{-2}7\cdot 11)$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
quart | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-5}3^{-2}7\cdot 11)$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
pint | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-6}3^{-2}7\cdot 11)$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
cup | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-7}3^{-2}7\cdot 11)$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
fluid ounce | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\text{ft}^{3}\tau^{3}2^{-10}3^{-2}7\cdot 11)$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
teaspoon | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{-3}5^{-5})$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
tablespoon | $L^{3}(\text{R}_{\infty}^{3}\alpha^{-6}\tau^{3}2^{-3}3\cdot 5^{-5})$ | $[\hbar^{3}\text{c}^{-3}\text{m}_\text{e}^{-3}\phi^{3}\text{g}_0^{3}]$ |
Name | Unified | Product |
---|
pounds per square inch | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-3}3^{2})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
pascal | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
barye | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-5}5^{-1})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
bar | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2\cdot 5^{5})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
technical atmosphere | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{g}_0\cdot \tau^{-3}5^{4})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
atmosphere | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{atm}\cdot \tau^{-3}2^{-4})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
inch mercury | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{in}_\text{Hg}^{-1}\tau^{-3}2^{-4})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
torr | $FL^{-2}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{atm}\cdot \tau^{-3}2^{-7}5^{-1}19^{-1})$ | $[\hbar^{-3}\text{c}^{5}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
Name | Unified | Product |
---|
erg | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-8}5^{-7})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
joule | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
foot-pound | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
calorie | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2\cdot 3^{2}5\cdot 43^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
kilocalorie | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{4}3^{2}5^{4}43^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
mean calorie | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2\cdot 3^{2}5\cdot 43^{-1}1.0001900224889804)$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Earth calorie | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0^{-3/2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\text{GM}_\text{E}^{3/2}\tau^{3}2^{-26}3^{2}5^{-20}43^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
British thermal unit | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{4}5^{5}43^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
gas gallon | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{8}3\cdot 5^{8}19\cdot 43^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
ton TNT | $FL(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}2^{10}3^{2}5^{10}43^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
electronvolt | $FL(\hbar^{-1}\text{c}^{-1}\text{e}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Name | Unified | Product |
---|
watt | $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
horsepower (Watt) | $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot 2^{2}3^{3}5^{-1})$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
horsepower (Metric) | $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \tau^{-1}2^{-2}3\cdot 5^{2})$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
horsepower | $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{g}_0\cdot \text{ft}\cdot \text{lb}\cdot \tau^{-1}2^{-1}5^{2}11)$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
electrical horsepower | $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-1}373)$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
tons refrigeration | $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{lb}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\tau^{-1}2^{4}3^{-1}5^{6}43^{-1})$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
boiler horsepower | $FLT^{-1}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\text{lb}\cdot \Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\tau^{-1}2^{-1}3^{-2}5^{5}43^{-1}1339)$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-1}\text{g}_0^{-2}]$ |
Name | Unified | Product |
---|
Kelvin | $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3})$ | $[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Rankine | $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4})$ | $[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Celsius | $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}\text{T}_0\cdot 2^{3}5^{3})$ | $[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
Fahrenheit | $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}3^{-2}5^{4}459.67)$ | $[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
sea level | $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}288.15)$ | $[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
boiling | $Θ(\text{k}_\text{B}\cdot \text{N}_\text{A}\cdot \text{c}^{-2}\mu_\text{eu}^{-1}2^{3}5^{3}373.1339)$ | $[\text{k}_\text{B}^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
mole | $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}2^{-4}5^{-3})$ | $[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}]$ |
Earth-mole | $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0^{-3/2}\text{GM}_\text{E}^{3/2}\tau^{3}2^{-31}5^{-24})$ | $[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}]$ |
pound-mole | $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{lb}\cdot 2^{-1})$ | $[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}]$ |
slug-mole | $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2^{-1})$ | $[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}]$ |
slinch-mole | $N(\hbar^{-1}\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \text{ft}^{-1}\text{lb}\cdot 2\cdot 3)$ | $[\text{m}_\text{e}\cdot \text{M}_\text{u}^{-1}]$ |
katal | $T^{-1}N(\hbar^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-5}5^{-3})$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}^{2}\text{M}_\text{u}^{-1}\phi^{-1}\text{g}_0^{-1}]$ |
amagat | $L^{-3}N(\text{k}_\text{B}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\mu_\text{eu}^{-1}\text{T}_0^{-1}\text{atm}\cdot \tau^{-3}2^{-3})$ | $[\hbar^{-3}\text{c}^{3}\text{m}_\text{e}^{4}\text{M}_\text{u}^{-1}\phi^{-3}\text{g}_0^{-3}]$ |
Name | Unified | Product |
---|
lumen | $J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot \phi^{-1}\text{g}_0^{-2}]$ |
candela | $JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-1}2^{-2})$ | $[\hbar^{-1}\text{c}^{4}\text{m}_\text{e}^{2}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-2}]$ |
lux | $L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-4}]$ |
phot | $L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}5^{4})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-4}]$ |
foot-candle | $L^{-2}J(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{ft}^{-2}\tau^{-3}2^{-4})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-3}\text{g}_0^{-4}]$ |
nit | $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}]$ |
abostilb | $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-3})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}]$ |
stilb | $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}5^{4})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}]$ |
lambert | $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2\cdot 5^{4})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}]$ |
foot-lambert | $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\text{ft}^{-2}\tau^{-4}2^{-3})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}]$ |
bril | $L^{-2}JA^{-2}(\hbar^{-1}\text{c}^{-2}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-4}2^{-10}5^{-7})$ | $[\hbar^{-3}\text{c}^{6}\text{m}_\text{e}^{4}\text{K}_\text{cd}\cdot \phi^{-5}\text{g}_0^{-4}]$ |
talbot | $TJ(\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-1})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{K}_\text{cd}\cdot \text{g}_0^{-1}]$ |
lumerg | $TJ(\hbar^{-1}\text{c}^{-1}\text{K}_\text{cd}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-8}5^{-7})$ | $[\text{c}^{2}\text{m}_\text{e}\cdot \text{K}_\text{cd}\cdot \text{g}_0^{-1}]$ |
Name | Unified | Product |
---|
hertz | $T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
actions per minute | $T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-3}3^{-1}5^{-1})$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
revolutions per minute | $T^{-1}A(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}2^{-3}3^{-1}5^{-1})$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
kayser | $L^{-1}(\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2\cdot 5^{2})$ | $[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
diopter | $L^{-1}A(\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-1})$ | $[\hbar^{-1}\text{c}\cdot \text{m}_\text{e}\cdot \text{g}_0^{-1}]$ |
rayleigh | $L^{-2}T(\text{c}\cdot \text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{9}5^{10})$ | $[\hbar^{-1}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
flick | $FL^{-2}T^{-1}A^{-2}(\hbar^{-1}\text{c}^{-2}\text{R}_{\infty}^{-5}\alpha^{10}\tau^{-4}2^{5}5^{10})$ | $[\hbar^{-4}\text{c}^{7}\text{m}_\text{e}^{5}\phi^{-6}\text{g}_0^{-5}]$ |
g-force | $FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\text{g}_0\cdot \tau^{-1}2^{-1})$ | $[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}]$ |
galileo | $FM^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{-3}5^{-2})$ | $[\hbar^{-1}\text{c}^{3}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-2}]$ |
eotvos | $FM^{-1}L^{-1}(\text{c}^{-2}\text{R}_{\infty}^{-2}\alpha^{4}\tau^{-2}2^{-11}5^{-9})$ | $[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{2}\phi^{-2}\text{g}_0^{-3}]$ |
darcy | $L^{2}(\text{R}_{\infty}^{2}\alpha^{-4}\text{atm}^{-1}\tau^{2}2^{-5}5^{-7})$ | $[\hbar^{2}\text{c}^{-2}\text{m}_\text{e}^{-2}\phi^{2}\text{g}_0^{2}]$ |
poise | $FL^{-2}T(\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-4}5^{-1})$ | $[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
reyn | $FL^{-2}T(\hbar^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\text{g}_0\cdot \text{ft}^{-2}\text{lb}\cdot \tau^{-2}2\cdot 3^{2})$ | $[\hbar^{-2}\text{c}^{3}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
stokes | $L^{2}T^{-1}(\text{c}^{-1}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{-3}5^{-4})$ | $[\hbar\cdot \text{m}_\text{e}^{-1}\phi\cdot \text{g}_0]$ |
rayl | $FL^{-3}T(\hbar^{-1}\text{R}_{\infty}^{-4}\alpha^{8}\tau^{-3}2^{-4})$ | $[\hbar^{-3}\text{c}^{4}\text{m}_\text{e}^{4}\phi^{-3}\text{g}_0^{-4}]$ |
mpg equivalent | $F^{-1}(\hbar\cdot \text{c}\cdot \text{R}_{\infty}^{2}\alpha^{-4}\text{ft}\cdot \text{lb}^{-1}\Omega_\text{it}\cdot \text{V}_\text{it}^{-2}\tau\cdot 2^{-2}5^{-7}11\cdot 19^{-1}43)$ | $[\hbar\cdot \text{c}^{-3}\text{m}_\text{e}^{-2}\phi\cdot \text{g}_0^{2}]$ |
langley | $FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\Omega_\text{it}^{-1}\text{V}_\text{it}^{2}\tau^{-2}2^{3}3^{2}5^{5}43^{-1})$ | $[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
jansky | $FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-29}5^{-26})$ | $[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
solar flux | $FL^{-1}(\hbar^{-1}\text{c}^{-1}\text{R}_{\infty}^{-3}\alpha^{6}\tau^{-2}2^{-25}5^{-22})$ | $[\hbar^{-2}\text{c}^{4}\text{m}_\text{e}^{3}\phi^{-2}\text{g}_0^{-3}]$ |
curie | $T^{-1}(\text{c}^{-1}\text{R}_{\infty}^{-1}\alpha^{2}\tau^{-1}2^{8}5^{9}37)$ | $[\hbar^{-1}\text{c}^{2}\text{m}_\text{e}\cdot \phi^{-1}\text{g}_0^{-1}]$ |
gray | $FM^{-1}L(\text{c}^{-2})$ | $[\text{c}^{2}\text{g}_0^{-1}]$ |
roentgen | $M^{-1}Q(\hbar^{1/2}\text{c}^{-3/2}\text{R}_{\infty}\cdot \alpha^{-2}\tau\cdot 2^{3}5^{3/2}/1.293)$ | $[\hbar^{1/2}\text{c}^{-1/2}\mu_0^{-1/2}\text{m}_\text{e}^{-1}\phi^{1/2}\lambda^{-1/2}\alpha_\text{L}^{-1}]$ |